• Title/Summary/Keyword: movie review

Search Result 119, Processing Time 0.022 seconds

Movie Recommended System base on Analysis for the User Review utilizing Ontology Visualization (온톨로지 시각화를 활용한 사용자 리뷰 분석 기반 영화 추천 시스템)

  • Mun, Seong Min;Kim, Gi Nam;Choi, Gyeong cheol;Lee, Kyung Won
    • Design Convergence Study
    • /
    • v.15 no.2
    • /
    • pp.347-368
    • /
    • 2016
  • Recently, researches for the word of mouth(WOM) imply that consumers use WOM informations of products in their purchase process. This study suggests methods using opinion mining and visualization to understand consumers' opinion of each goods and each markets. For this study we conduct research that includes developing domain ontology based on reviews confined to "movie" category because people who want to have watching movie refer other's movie reviews recently, and it is analyzed by opinion mining and visualization. It has differences comparing other researches as conducting attribution classification of evaluation factors and comprising verbal dictionary about evaluation factors when we conduct ontology process for analyzing. We want to prove through the result if research method will be valid. Results derived from this study can be largely divided into three. First, This research explains methods of developing domain ontology using keyword extraction and topic modeling. Second, We visualize reviews of each movie to understand overall audiences' opinion about specific movies. Third, We find clusters that consist of products which evaluated similar assessments in accordance with the evaluation results for the product. Case study of this research largely shows three clusters containing 130 movies that are used according to audiences'opinion.

Personalized Movie Recommendation System Using Context-Aware Collaborative Filtering Technique (상황기반과 협업 필터링 기법을 이용한 개인화 영화 추천 시스템)

  • Kim, Min Jeong;Park, Doo-Soon;Hong, Min;Lee, HwaMin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.9
    • /
    • pp.289-296
    • /
    • 2015
  • The explosive growth of information has been difficult for users to get an appropriate information in time. The various ways of new services to solve problems has been provided. As customized service is being magnified, the personalized recommendation system has been important issue. Collaborative filtering system in the recommendation system is widely used, and it is the most successful process in the recommendation system. As the recommendation is based on customers' profile, there can be sparsity and cold-start problems. In this paper, we propose personalized movie recommendation system using collaborative filtering techniques and context-based techniques. The context-based technique is the recommendation method that considers user's environment in term of time, emotion and location, and it can reflect user's preferences depending on the various environments. In order to utilize the context-based technique, this paper uses the human emotion, and uses movie reviews which are effective way to identify subjective individual information. In this paper, this proposed method shows outperforming existing collaborative filtering methods.

Convergence and Integration Review of Fire fighter Image through Disaster Movies (재난 영화를 통해 본 소방관 이미지에 대한 융·복합적 고찰)

  • Lee, In-Seob;Kim, Jee-Hee;Kim, Yun-Jeong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • The purpose of the study was to investigate the fire fighter image through disaster movies in Korea and other countries. From September 1 to 7, 2016, the movie search methods were carried out using movie title and key words via Wikipedia and various internet web sites from 1903 to 2016. The results included that the fire fighters had been considered as the precious person of volunteer activity regarding fire suppression, investigators, and self-sacrifice. Through the convergence and integration review of the disaster movie, this research suggested that the national based establishment of the welfare and safety system for the posttraumatic stress disorder(PTSD) and critical incident stress management(CISM) education program. This study will provide the basic data for the development of welfare and safety management for the fire fighters and let the people know the sacrifice of the fire fighters including the motto, "First in and the last out".

A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier (영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축)

  • Kim, Yuyoung;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.71-89
    • /
    • 2016
  • Sentiment analysis is used for identifying emotions or sentiments embedded in the user generated data such as customer reviews from blogs, social network services, and so on. Various research fields such as computer science and business management can take advantage of this feature to analyze customer-generated opinions. In previous studies, the star rating of a review is regarded as the same as sentiment embedded in the text. However, it does not always correspond to the sentiment polarity. Due to this supposition, previous studies have some limitations in their accuracy. To solve this issue, the present study uses a supervised sentiment classification model to measure a more accurate sentiment polarity. This study aims to propose an advanced sentiment classifier and to discover the correlation between movie reviews and box-office success. The advanced sentiment classifier is based on two supervised machine learning techniques, the Support Vector Machines (SVM) and Feedforward Neural Network (FNN). The sentiment scores of the movie reviews are measured by the sentiment classifier and are analyzed by statistical correlations between movie reviews and box-office success. Movie reviews are collected along with a star-rate. The dataset used in this study consists of 1,258,538 reviews from 175 films gathered from Naver Movie website (movie.naver.com). The results show that the proposed sentiment classifier outperforms Naive Bayes (NB) classifier as its accuracy is about 6% higher than NB. Furthermore, the results indicate that there are positive correlations between the star-rate and the number of audiences, which can be regarded as the box-office success of a movie. The study also shows that there is the mild, positive correlation between the sentiment scores estimated by the classifier and the number of audiences. To verify the applicability of the sentiment scores, an independent sample t-test was conducted. For this, the movies were divided into two groups using the average of sentiment scores. The two groups are significantly different in terms of the star-rated scores.

Bipartite Preference aware Robust Recommendation System (이분법 선호도를 고려한 강건한 추천 시스템)

  • Lee, Jaehoon;Oh, Hayoung;Kim, Chong-kwon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.953-960
    • /
    • 2016
  • Due to the prevalent use of online systems and the increasing amount of accessible information, the influence of recommender systems is growing bigger than ever. However, there are several attempts by malicious users who try to compromise or manipulate the reliability of recommender systems with cyber-attacks. By analyzing the ratio of 'sympathy' against 'apathy' responses about a concerned review and reflecting the results in a recommendation system, we could present a way to improve the performance of a recommender system and maintain a robust system. After collecting and applying actual movie review data, we found that our proposed recommender system showed an improved performance compared to the existing recommendation systems.

Morden People and History : in terms of Historical Media and Reenactment Activity (현대 대중과 역사 : 역사를 소재로 한 영상매체와 '리인액트먼트(Reenactment Activity)'를 중심으로)

  • Park, Kwang Sun
    • Korean Educational Research Journal
    • /
    • v.37 no.1
    • /
    • pp.19-32
    • /
    • 2016
  • The purpose of this article is to review the historical media and reenactment activity which is used in history education. Especially, teachers are very interested in how to develop the interest of the students in class. In this article, we review the characters of the reenactment activity as well as the drama and film. The definition of the reenactment activity is to act like a historical persons. 'Reenactment activity' is not familiar to us in Korea but it is very famous to the students and the teachers who want to re-act the historical life. Reenactment actvitiy is more efficient than movie because doing reenactment is much cheeper than making film.

  • PDF

Unstructured Data Quantification Scheme Based on Text Mining for User Feedback Extraction (사용자 의견 추출을 위한 텍스트 마이닝 기반 비정형 데이터 정량화 방안)

  • Jo, Jung-Heum;Chung, Yong-Taek;Choi, Seong-Wook;Ok, Changsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.131-137
    • /
    • 2018
  • People write reviews of numerous products or services on the Internet, in their blogs or community bulletin boards. These unstructured data contain important emotions and opinions about the author's product or service, which can provide important information for future product design or marketing. However, this text-based information cannot be evaluated quantitatively, and thus they are difficult to apply to mathematical models or optimization problems for product design and improvement. Therefore, this study proposes a method to quantitatively extract user's opinion or preference about a specific product or service by utilizing a lot of text-based information existing on the Internet or online. The extracted unstructured text information is decomposed into basic unit words, and positive rate is evaluated by using existing emotional dictionaries and additional lists proposed in this study. This can be a way to effectively utilize unstructured text data, which is being generated and stored in vast quantities, in product or service design. Finally, to verify the effectiveness of the proposed method, a case study was conducted using movie review data retrieved from a portal website. By comparing the positive rates calculated by the proposed framework with user ratings for movies, a guideline on text mining based evaluation of unstructured data is provided.

The Prediction of the Helpfulness of Online Review Based on Review Content Using an Explainable Graph Neural Network (설명가능한 그래프 신경망을 활용한 리뷰 콘텐츠 기반의 유용성 예측모형)

  • Eunmi Kim;Yao Ziyan;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.309-323
    • /
    • 2023
  • As the role of online reviews has become increasingly crucial, numerous studies have been conducted to utilize helpful reviews. Helpful reviews, perceived by customers, have been verified in various research studies to be influenced by factors such as ratings, review length, review content, and so on. The determination of a review's helpfulness is generally based on the number of 'helpful' votes from consumers, with more 'helpful' votes considered to have a more significant impact on consumers' purchasing decisions. However, recently written reviews that have not been exposed to many customers may have relatively few 'helpful' votes and may lack 'helpful' votes altogether due to a lack of participation. Therefore, rather than relying on the number of 'helpful' votes to assess the helpfulness of reviews, we aim to classify them based on review content. In addition, the text of the review emerges as the most influential factor in review helpfulness. This study employs text mining techniques, including topic modeling and sentiment analysis, to analyze the diverse impacts of content and emotions embedded in the review text. In this study, we propose a review helpfulness prediction model based on review content, utilizing movie reviews from IMDb, a global movie information site. We construct a review helpfulness prediction model by using an explainable Graph Neural Network (GNN), while addressing the interpretability limitations of the machine learning model. The explainable graph neural network is expected to provide more reliable information about helpful or non-helpful reviews as it can identify connections between reviews.

Dynamic Interaction of Performance Information and Word-of-Mouth in Film Industry (영화공급사슬 내 성과정보와 입소문 효과의 동적상호작용에 대한 연구)

  • Lee, Wonhee
    • Korean Management Science Review
    • /
    • v.32 no.2
    • /
    • pp.125-143
    • /
    • 2015
  • When studying the film industry, researchers have seldom addressed the dynamic interaction between marketing information and word of mouth in the motion picture industry mainly because of the limitation of traditional research methodologies. This study explores integration and competition among important variables influencing on audience's choice on movie selection, particularly by using a new method of agent-based modeling including competitive environment. Decision process of moviegoer composed of transition probability based on multinomial logit model, considering marketing and box-office information, critique, and word of mouth from other moviegoers. After validating the fitness of market share among released movies, this study conducted a set of simulation experiments considering several variables such as market size, change of weight between variables, and movie performance under competition. Propositions are derived from the simulation results is also suggested for future research.

The Effect of Review Behavior on the Reviewer's Valence in Online Retailing

  • Oh, Yun-Kyung
    • Journal of Distribution Science
    • /
    • v.15 no.10
    • /
    • pp.41-50
    • /
    • 2017
  • Purpose - Online product review has become a crucial part of the online retailer's market performance for a wide range of products. This research aims to investigate how an individual reviewer's review frequency and timing affect her/his average attitude toward products. Research design, data, and methodology - To conduct reviewer-level analysis, this study uses 42,172 posted online review messages generated by 6,941 identified reviewers for 59 movies released in the South Korea from July 2015 to December 2015. This study adopts Tobit model specification to take into account the censored nature and the selection bias arising from the nature of J-shaped distribution of movie rating. Results - Our estimation results support that the negative impact of review frequency and timing on valence. Furthermore, review timing has an inverted-U relationship with the user's average valence and enhance the negative effect of review frequency. Conclusions - This study contributes to the growing literature on the understanding how eWOM is generated at the individual consumer level. On the basis of the main empirical findings, this study provides insights into building a recommendation system in online retail store based on the consumer's review history data - frequency, timing, and valence.