• Title/Summary/Keyword: mover

Search Result 337, Processing Time 0.025 seconds

Comparison of the Isometric Hip Flexors Strength in Supine Position in Subjects With and Without Weak Isometric Core Strength

  • Jeon, In-Cheol
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.59-64
    • /
    • 2021
  • Background: Hip flexor muscles are very important in the hip joint structure as a mover and stabilizer. In addition, isometric hip flexor strength in the supine position needs to be considered with isometric core strength (WICS) to measure a precise strength in a clinical way. Objects: We compared isometric hip flexor strength in the supine position in subjects with and without WICS (between factors) and conditions with and without an external support (within factors). Methods: A total of 34 subjects (16 with WICS, 18 without WICS) participated in this study. We used the double-bent leg-lowering test to divide the subjects in two groups according to the presence of WICS. Isometric hip flexor strength was evaluated in the supine position both with and without an external support condition. The two-way mixed analysis of variance was applied to identify significant differences between groups (with vs. without WICS: between factors) and conditions (with vs. without an external support: within factors). Statistical significance was set at α = 0.05. Results: In subjects with WICS, isometric hip flexor strength was greater with an external support than without it (p = 0.0064). In subjects without WICS, there were no significant differences in isometric hip flexor strength in the presence or absence of an external support (p = 0.075). The isometric hip flexor strength was significantly greater with an external support condition in particular in subjects with WICS. Conclusion: The findings of this study reported that an external support condition in individuals with WICS may contribute to the improvement of isometric hip flexion strength in the supine position. Therefore, isometric core strength should be evaluated to distinguish the weakness between core region and hip flexors.

The effect of ambidextrous strategic balance on the management performance of venture businesses (양손잡이 전략균형이 벤처기업 경영성과에 미치는 영향)

  • Se-jong Yoo;Yong-seok Cho;Woo-hyoung Kim
    • Korea Trade Review
    • /
    • v.48 no.1
    • /
    • pp.83-126
    • /
    • 2023
  • The revenue histogram of venture businesses is shifting from bell-shaped normal distribution to power-law distribution, which implies that the fitness landscape of the venture businesses ecosystem is changing to be more rugged terrain. We argue that the firm should adopt both exploitation (fast follower) and exploration (or first mover) strategies not to get stuck in local maxima in the rugged fitness landscape from the complex system perspective. By designing and performing agent-based modeling simulation experiments which consist of three types of agents (new technologies, entrepreneurs, and consumers), we demonstrated that the ambidexterity strategy showed the highest performance score in three of four different environment except 'Fast Widening' case where the exploitation strategy showed the highest performance score under low technology appropriation and fast disruptive technology development speed. By investigating the financial and other statistics of 617 top venture businesses who have earned 100B won or higher annual revenue, we concluded that 82% and 9% of firms are bent on the exploitation and exploration strategy.

Feasibility Study of a Series Hybrid-Electric Propulsion System for a Fixed Wing VTOL Unmanned Aerial Vehicle (고정익 수직이착륙 무인항공기를 위한 하이브리드-전기 추진시스템의 타당성 연구)

  • Kim, Boseong;Bak, Jeonggyu;Yun, Senghyun;Cho, Sooyoung;Ha, Juhyung;Park, Gyusung;Lee, Geunho;Won, Sunghong;Moon, Changmo;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1097-1107
    • /
    • 2015
  • General VTOL aircraft uses gas turbine engine which has high power to weight ratio. However, in the VTOL UAV in small sector, the gas turbine as a prime mover is not adequate because of the limitation of the high fuel consumption ratio of the gas turbine. In this research, The Series Hybrid-Electric Propulsion System(SHEPS) has been proposed and technology survey & comparison analysis has conducted to constitute propulsion system for engine, electric motor and battery. To achieve this object a 65kg-class P-UAV from "Company I" was used. And to estimate the validity of power control algorithm and developed power management control, Matlab/simulink$^{(R)}$ has been used for the simulation. As a result, the developed algorithm worked comparatively well and the research has predicted that SHEPS was satisfied enough for 7 hour of endurance for mission profile.

A Comparison of Change in Thickness for Lower Trapezius Muscle During Lower Trapezius Muscle Isometric Exercise and Reliability of Ultrasound Imaging (하승모근 등척성 운동방법에 따른 근두께 변화량 비교 및 초음파 영상의 신뢰도 연구)

  • Song, Woo-Ri;Kim, Suhn-Yeop;Jang, Hyun-Jeong
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.31-39
    • /
    • 2012
  • The lower trapezius muscle is an important stabilizer and primary mover of the scapula. The potential use of ultrasound imaging to evaluate scapular muscle function warrants investigation. The purpose of this study is to use ultrasound imaging for determining the effectiveness of 4 different isometric exercises for maximally activating the lower trapezius muscles in healthy subjects. Twenty-eight (14 men and 14 women) volunteers were recruited for this study. Thickness measurements of the lower trapezius muscles were recorded during 4 exercises: latissimus pulldown (LP), prone V-raise (PV), prone row (PR), and modified prone cobra (MP). Lower trapezius muscle thickness was measured 3 times by 2 investigators at a point 3 cm lateral to the lateral edge of the T8 spinous process. The order of 4 exercise execution was randomized for each participant. To identify statistical significance, one-way ANOVA with repeated measures was used with the significance level of .05. Intraclass correlation coefficient (ICC) for intra-reliability was .86~.98 and inter-rater reliability .83~.96 for the lower trapezius, respectively (p<.01). Thickness changes in the lower trapezius muscles between the relaxed and contracted states in men were as follows: LP ($7.37{\pm}2.68mm$, 182%), MP ($4.69{\pm}1.74mm$, 167%), PV ($4.52{\pm}1.47mm$, 149%), and PR ($3.84{\pm}1.72mm$, 133%). In women the values were as follows: LP ($4.64{\pm}1.24mm$, 163%), MP ($2.79{\pm}.81mm$, 131%), PV ($2.78{\pm}.85mm$, 129%), and PR ($2.21{\pm}1.26$ mm, 100%). Thickness of the lower trapezius muscles significantly differed between exercises in both the gender (p<.01). The LP was the most effective exercise for increasing the activation of the lower trapezius muscle in both the gender. We recommend performing the LP exercise for strengthening the lower trapezius muscles.

Dynamic Electromyography Analysis of Shoulder Muscles for One-handed Manual Material Handling

  • Mo, Seung-Min;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.313-326
    • /
    • 2015
  • Objective: The objective of this research is to quantitatively analyze muscle activities of arm and shoulder, according to direction in various types of one-handed manual material handling, based on surface electromyography. Background: Workers in industrial sites frequently carry out one-handed manual material handling using arm and shoulder muscles. Therefore, chronic load and accumulated fatigue occur to arm and shoulder muscles, which becomes a main cause of upper arm and shoulder musculoskeletal disorders. The shoulder muscles have widely range of motion, and complex interactions take place among various muscles including rotator cuff muscles. In this regard, research on interactions among should muscles, according to such various dynamic motions, is required. Method: Ten male subjects in their 20s participated in this research. This research considered upward, downward, leftward, rightward, forward and backward directions and fourteen muscles around arm and shoulder (biceps brachii and trapezius, etc.) as independent variables. The mean muscle activity was set as the dependent variable. This research extracted $4^{th}{\sim}7^{th}$ repetition signals according to ten times of repetitive muscle contraction, and analyzed the muscle activity concerned using the envelope detection technique. Results: The mean muscle activity of upward direction was analyzed highly statistically significant. The reason is that the effect of gravity works to arm and shoulder muscles. Also, it is conjectured that deformation of coracoacromial ligament was caused, and its contact pressure increased, due mainly to the shoulder flexion, and therefore load was analyzed high. Muscle activity was analyzed significantly low, according to concentric ballistic motion used in the concentric contraction phase by storing elastic energy in the eccentric contraction phase with a motion to bring the weight to the front of subject's body as to downward, leftward and backward directions. Because, elbow joint's flexion-extension motions mainly occurred, biceps brachii was analyzed high muscle activity as the prime mover. Conclusion: The information on the quantitative load of muscles can be applied to ergonomic work design for one-handed manual material handling to minimize muscle load. Application: This research has effectively identified muscle activity according to dynamic contraction by applying an envelope detection technique. The results can be used for ergonomic work design to minimize muscle load during the one-handed manual material handling, according to each direction. The research results are expected to be used for musculoskeletal disorder prevention and physiotherapy in the rehabilitation medical field, based on the muscle load of arm and shoulder in various directions.

A study on the arrangement of integrated power system for warship (함정의 통합 전력시스템 구성에 관한 연구)

  • Baek, Hyun-Min;Jung, Kyun-Sik;Lee, Myung-Ho;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1070-1074
    • /
    • 2014
  • According to IEEE 1662(2009), IPS is a power system where all prime movers produce electrical power that is shared among propulsion, mission, and ship service loads. Discriminating attributes of integrated power systems are flexibility of movers' arrangements, mechanical decoupling between prime movers and propulsors, an increased level of energy conversion and transmission redundancy, and flexibility of redistributing available electrical power for future electronic weapons. IPS could have various steps of power that can be produced at optimal load of movers. In this study, an evaluation method for optimal arrangement of movers was investigated when an IPS warship is projected. The two factors are utilized for the quantitative analysis which are the weight of system as the fighting power and the fuel consumption per year as the economic feasibility. And also the ways for arrangement of system were studied according to existence of small diesel generator. The evaluation method that decides the optimization level is based on the DEA(Data Envelopment Analysis)

The Post Occupancy Evaluation of the Universal Design Project on Geonjisan Forest Trail Jeonju City, South Korea (전주시 건지산 숲길 Universal Design 사업 이용후 평가)

  • Park, Sun-A;Lee, Myung-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.60-69
    • /
    • 2012
  • The project on Geonjisan Universal Design Forest Trail in Jeonju City was designed and constructed by an NGO called 'Jeonbuk Forest for Life' which was a winner for the '2008 Open Competition by the 'Committee for Greening Society' established in Korea Land Corporation. The purpose of this study is to evaluate the design satisfaction of UD forest trail. Post Occupancy Evaluation (POE) method was applied to measure the user satisfaction and the total number of users. The main result of the study were as follows: the major users of the Geonjisan UD forest trail were people aged over 60 years old(37%) and the main purpose of trail usage were to 'walk and rest'(51.5%) and to 'exercise and rehabilitation' (40.6%). Furthermore, the overall user rating for the UD forest trail design was "satisfied"(3.91 point in 5-point Likert Scale). The three most influencing factors of the overall user satisfaction were facility management, user conflict, and trail width and slope. About forty-five people were found to be End-user in the UD forest trail while six people were found as End-user in non-UD trails. Most importantly, the number of End-user observed on the UD forest trail was greater than the number found in non-UD forest trail. The result implies that the UD forest trail attracts more End-users and provides opportunity for gathering and interaction with the other users. Moreover, the satisfaction rate for the UD forest trail landscape is found to be high in Likert scale, which we can assume that the well-grown existing trees and topographic features as well as appropriately designed wood-paths influence the high satisfaction rate of the users. The POE of UD forest trail revealed the importance of universal design concept due to its convenient uses of the handicapped, old, weak, pregnant woman or children.

Study on Management Performance of Environment-Friendly Firms (환경친화지정기업의 경영성과에 관한 연구)

  • Lho, Sangwhan
    • Environmental and Resource Economics Review
    • /
    • v.13 no.3
    • /
    • pp.499-518
    • /
    • 2004
  • This study tests four hypotheses on management performance of environment-friendly firms. The hypotheses are that i) environment-friendly firms are lower management performance than general firms, ii) high cost environment-friendly firms are lower management performance than lower cost ones, small and medium environment-friendly firms lower management performance than large ones, and long-term environment-friendly firms higher management performance than short-term ones. The major findings are that the first hypothesis is not supported at the 5% significance level and the second one is also not supported at the 10% significance level. The third one is supported in terms of stability since large firms are more stable small and medium ones at the 5% significance level. The last one is not supported since short-term environment-friendly firms are more stable than long-term ones in the 10% significance level.

  • PDF

A Study of Electromagnetic Actuator for Electro-pneumatic Driven Ventricular Assist Device

  • Jung Min Woo;Hwang Chang Mo;Jeong Gi Seok;Kang Jung Soo;Ahn Chi Bum;Kim Kyung Hyun;Lee Jung Joo;Park Yong Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.393-398
    • /
    • 2005
  • An electromechanical type is the most useful mechanism in the various pumping mechanisms. It, however, requires a movement converting system including a ball screw, a helical cam, or a solenoid-beam spring, which makes the device complex and may lessen reliability. Thus, the authors have hypothesized that an electromagnetic actuator mechanism can eliminate the movement converting system and that thereby enhance the mechanical reliability and operative simplicity of an electro­pneumatic pump. The purpose of this study was to show a novel application of electromagnetic actuator mechanism in pulsatile pump and to provide preliminary data for further evaluations. The electromagnetic actuator consists of stators with a single winding excitation coil and movers with a high energy density neodymium-iron-boron permanent magnet. A 0.5mm diameter wire was used for the excitation coil, and 1000 turns were wound onto the stators core with parallel. A prototype of extracorporeal electro-pneumatic pump was constructed, and the pump performance tests were performed using a mock system to evaluate the efficiency of the electromagnetic actuator mechanism. When forward and backward electric currents were supplied to the excitation coil, the mover effectively moved back and forth. The nominal stroke length of the actuator was 10mm. The actuator dimension was 120mm in diameter and 65mm in height with a mass of 1.4kg. The prototype pump unit was 150mm in diameter, 150mm in thickness and 4.5kg in weight. The maximum force output was 70N at input current of 4.5A and the maximum pump rate was 150 beats per minute. The maximum output was 2.0 L/minute at a rate of 80bpm when the afterload was 100mmHg. The electromagnetic actuator mechanism was successfully applied to construct the prototype of extracorporeal electro­pneumatic pump. The authors provide the above results as a preliminary data for further studies.

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.