• Title/Summary/Keyword: movements

Search Result 4,047, Processing Time 0.03 seconds

Studies on the Functional Interrelation between the Vestibular Canals and the Extraocular Muscles (미로반규관(迷路半規管)과 외안근(外眼筋)의 기능적(機能的) 관계(關係)에 관(關)한 연구(硏究))

  • Kim, Jeh-Hyub
    • The Korean Journal of Physiology
    • /
    • v.8 no.2
    • /
    • pp.1-17
    • /
    • 1974
  • This experiment was designed to explore the specific functional interrelations between the vestibular semicircular canals and the extraocular muscles which may disclose the neural organization, connecting the vestibular canals and each ocular motor nuclei in the brain system, for vestibuloocular reflex mechanism. In urethane anesthetized rabbits, a fine wire insulated except the cut cross section of its tip was inserted into the canals closely to the ampullary receptor organs through the minute holes provided on the osseous canal wall for monopolar stimulation of each canal nerve. All extraocular muscles of both eyes were ligated and cut at their insertio, and the isometric tension and EMG responses of the extraocular muscles to the vestibular canal nerve stimulation were recorded by means of a physiographic recorder. Upon stimulation of the semicircular canal nerve, direction if the eye movement was also observed. The experimental results were as follows. 1) Single canal nerve stimulation with high frequency square waves (240 cps, 0. 1 msec) caused excitation of three extraocular muscles and inhibition of remaining three muscles in the bilateral eyes; stimulation of any canal nerve of a unilateral labyrinth caused excitation (contraction) of the superior rectus, superior oblique and medial rectus muscles and inhibition (relaxation) of the inferior rectus, inferior oblique and lateral rectos muscles in the ipsilateral eye, and it caused the opposite events in the contralateral eye. 2) By the overlapped stimulation of triple canal nerves of a unilateral labyrinth, unidirectional (excitatory or inhibitory) summation of the individual canal effects on a given extraocular muscles was demonstrated, and this indicates that three different canals of a unilateral vestibular system exert similar effect on a given extraocular muscles. 3) Based on the above experimental evidences, a simple rule by which one can define the vestibular excitatory and inhibitory input sources to all the extraocular muscles is proposed; the superior rectus, superior oblique and medial rectus muscles receive excitatory impulses from the ipsilateral vestibular canals, and the inferior rectus, inferior oblique and lateral rectus muscles from the contralateral canals; the opposite relationship applies for vestibular inhibitory impulses to the extraocular muscles. 4) According to the specific direction of the eye movements induced by the individual canal nerve stimulation, an extraocutar muscle exerting major role (a muscle of primary contraction) and two muscles of synergistic contraction could be differentiated in both eyes. 5) When these experimental results were compared to the well known observations of Cohen et al. (1964) made in the cats, extraocular muscles of primary contraction were the same but those of synergistic contraction were partially different. Moreover, the oblique muscle responses to each canal nerve excitation appeared to be all identical. However, the responnes of horizontal (medial and lateral) and vertical (superior and inferior) rectus muscles showed considerable differences. By critical analysis of these data, the author was able to locate theoretical contradictions in the observations of Cohen et al. but not in the author's results. 6) An attempt was also made to compare the functional observation of this experiment to the morphological findings of Carpenter and his associates obtained by degeneration experiments in the monkeys, and it was able to find some significant coincidence between there two works of different approach. In summary, the author has demonstrated that the well known observations of Cohen et al. on the vestibulo-ocular interrelation contain important experimental errors which can he proved by theoretical evaluation and substantiated by a series of experiments. Based on such experimental evidences, a new rule is proposed to define the interrelation between the vestibular canals and the extraocular muscles.

  • PDF

Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications (전기고생대 태백산분지 영월층군의 순차층서 연구를 통한 고지리적 추론)

  • Kwon, Y.K.
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.317-333
    • /
    • 2012
  • The Yeongweol Group is a Lower Paleozoic mixed carbonate-siliciclastic sequence in the Taebaeksan Basin of Korea, and consists of five lithologic formations: Sambangsan, Machari, Wagok, Mungok, and Yeongheung in ascending order. Sequence stratigraphic interpretation of the group indicates that initial flooding in the Yeongweol area of the Taebaeksan Basin resulted in basal siliciclastic-dominated sequences of the Sambangsan Formation during the Middle Cambrian. The accelerated sea-level rise in the late Middle to early Late Cambrian generated a mixed carbonate-siliciclastic slope or deep ramp sequence of shale, grainstone and breccia intercalations, representing the lower part of the Machari Formation. The continued rise of sea level in the Late Cambrian made substantial accommodation space and activated subtidal carbonate factory, forming carbonate-dominated subtidal platform sequence in the middle and upper parts of the Machari Formation. The overlying Wagok Formation might originally be a ramp carbonate sequence of subtidal ribbon carbonates and marls with conglomerates, deposited during the normal rise of relative sea level in the late Late Cambrian. The formation was affected by unstable dolomitization shortly after the deposition during the relative sea-level fall in the latest Cambrian or earliest Ordovician. Subsequently, it was extensively dolomitized under the deep burial diagenetic condition. During the Early Ordovician (Tremadocian), global transgression (viz. Sauk) was continued, and subtidal ramp deposition was sustained in the Yeongweol platform, forming the Mungok Formation. The formation is overlain by the peritidal carbonates of the Yeongheung Formation, and is stacked by cyclic sedimentation during the Early to Middle Ordovician (Arenigian to Caradocian). The lithologic change from subtidal ramp to peritidal facies is preserved at the uppermost part of the Mungok Formation. The transition between Sauk and Tippecanoe sequences is recognized within the middle part of the Yeongheung Formation as a minimum accommodation zone. The global eustatic fall in the earliest Middle Ordovician and the ensuing rise of relative sea level during the Darrwillian to Caradocian produced broadly-prograding peritidal carbonates of shallowing-upward cyclic successions within the Yeongheung Formation. The reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. This reveals that the Yeongweol platform experienced same tectonic movements with the Taebaek platform, and consequently that both platform sequences might be located in a body or somewhere separately in the margin of the North China platform. The significant differences in lithologic and stratigraphic successions imply that the Yeongweol platform was much far from the Taebaek platform and not associated with the Taebaek platform as a single depositional system. The Yeongweol platform was probably located in relatively open shallow marine environments, whereas the Taebaek platform was a part of the restricted embayments. During the late Paleozoic to early Mesozoic amalgamations of the Korean massifs, the Yeongweol platform was probably pushed against the Taebaek platform by the complex movement, forming fragmented platform sequences of the Taebaeksan Basin.

Kinemetic analysis of a thumping security motion with an expandable barton (경호원의 삼단봉 머리치기 동작의 운동학적 분석)

  • Kim, Yong-Hak;Kim, Sin-Hye;Jung, Sung-Bae
    • Korean Security Journal
    • /
    • no.36
    • /
    • pp.93-109
    • /
    • 2013
  • This research is mainly based on the experimental result due to seek different outcomes whena certain security motion with a paticular gear is applied in a plausible confrontational situation. For the purpose of this research an Expandable Baton, which is one of the most commonsecurity equipments, was chosen to be applied in a situation of hitting a person's head. Alsothe results will be studied in the view of Kinematic theory. To demonstrate, 10 students who were majeored in Escort Crane studies at 'H' university werechosen as testees. The participants were grouped into two-one is practiced with the 'expanadable baton use program' and the other is pre-practiced. In this report two groups abovewill be reffered as 'group A' and 'group B' for conveniency. There were a number of differences and changes between two groups. Group B took more timethan the other group did. Group A spent about 0.428sec in section 'e2' and 0.230sec in section'e3' while Group B took 0.435sec, 0.232sec in each sections.To add on, more distinctive results were out when it was more focused on physical movements. Two gropus presented considerable changes- in an 'left-right' moving displacement-Group A;$2.16{\pm}0.9cm$ (left side), $3.78{\pm}1.42cm$ (right side), total $5.94{\pm}2.03cm$. Group B; $2.97{\pm}1.01cm$ (left side),$4.56{\pm}1.57cm$ (right side), total $7.53{\pm}2.13cm$.Continuously, different outcomeswere shown between two groups in a 'back and forth' moving displacement-Group A;$32.48{\pm}3.86cm$, $35.21{\pm}4.64cm$, total $69.36{\pm}5.72$. Group B; $34.50{\pm}6.12cm$, $37.04{\pm}3.70cm$, total $71.46{\pm}7.17cm$. Furthermore, changes in an 'up and down' moving displacement were - GroupA; $5.62{\pm}2.41cm$, $4.54{\pm}1.87cm$, total $10.11{\pm}1.57cm$. Group B; $6.33{\pm}1.78cm$, $4.86{\pm}1.85cm$,total $10.68{\pm}1.81cm$. To continue, there were few modifications of degree on participants' joints, espcially on 'Wristjoint', 'Elbow joint' and 'Shoulder joint', depend on different sections -Wrist joint;Group A; e1 $114.62{\pm}7.13$, e2 $68.27{\pm}6.37$, e3 $131.64{\pm}6.27$. Group B; e1 $112.62{\pm}6.13$, e2 $66.28{\pm}7.38$, e3$137.42{\pm}4.28$ and Elbow joint ; Group A e1 $132.31{\pm}6.55$, e2 $117.92{\pm}8.42$, e3 $144.41{\pm}6.32$. Group B; e1 $133.58{\pm}8.56$, e2 $114.45{\pm}8.21$, e3 $139.89{\pm}4.38$. Lastly, degree changes ofshoulder joint were; Group A; e1 $13.55{\pm}3.85$, e2 $131.42{\pm}11.24$, e3 $78.32{\pm}6.28$. Group B; e1$9.45{\pm}1.23$, e2 $136.74{\pm}13.21$, e3 $79.75{\pm}4.24$.

  • PDF

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.

Structure of Export Competition between Asian NIEs and Japan in the U.S. Import Market and Exchange Rate Effects (한국(韓國)의 아시아신흥공업국(新興工業國) 및 일본(日本)과의 대미수출경쟁(對美輸出競爭) : 환율효과(換率效果)를 중심(中心)으로)

  • Jwa, Sung-hee
    • KDI Journal of Economic Policy
    • /
    • v.12 no.2
    • /
    • pp.3-49
    • /
    • 1990
  • This paper analyzes U.S. demand for imports from Asian NIEs and Japan, utilizing the Almost Ideal Demand System (AIDS) developed by Deaton and Muellbauer, with an emphasis on the effect of changes in the exchange rate. The empirical model assumes a two-stage budgeting process in which the first stage represents the allocation of total U.S. demand among three groups: the Asian NIEs and Japan, six Western developed countries, and the U.S. domestic non-tradables and import competing sector. The second stage represents the allocation of total U.S. imports from the Asian NIEs and Japan among them, by country. According to the AIDS model, the share equation for the Asia NIEs and Japan in U.S. nominal GNP is estimated as a single equation for the first stage. The share equations for those five countries in total U.S. imports are estimated as a system with the general demand restrictions of homogeneity, symmetry and adding-up, together with polynomially distributed lag restrictions. The negativity condition is also satisfied for all cases. The overall results of these complicated estimations, using quarterly data from the first quarter of 1972 to the fourth quarter of 1989, are quite promising in terms of the significance of individual estimators and other statistics. The conclusions drawn from the estimation results and the derived demand elasticities can be summarized as follows: First, the exports of each Asian NIE to the U.S. are competitive with (substitutes for) Japan's exports, while complementary to the exports of fellow NIEs, with the exception of the competitive relation between Hong Kong and Singapore. Second, the exports of each Asian NIE and of Japan to the U.S. are competitive with those of Western developed countries' to the U.S, while they are complementary to the U.S.' non-tradables and import-competing sector. Third, as far as both the first and second stages of budgeting are coneidered, the imports from each Asian NIE and Japan are luxuries in total U.S. consumption. However, when only the second budgeting stage is considered, the imports from Japan and Singapore are luxuries in U.S. imports from the NIEs and Japan, while those of Korea, Taiwan and Hong Kong are necessities. Fourth, the above results may be evidenced more concretely in their implied exchange rate effects. It appears that, in general, a change in the yen-dollar exchange rate will have at least as great an impact, on an NIE's share and volume of exports to the U.S. though in the opposite direction, as a change in the exchange rate of the NIE's own currency $vis-{\grave{a}}-vis$ the dollar. Asian NIEs, therefore, should counteract yen-dollar movements in order to stabilize their exports to the U.S.. More specifically, Korea should depreciate the value of the won relative to the dollar by approximately the same proportion as the depreciation rate of the yen $vis-{\grave{a}}-vis$ the dollar, in order to maintain the volume of Korean exports to the U.S.. In the worst case scenario, Korea should devalue the won by three times the maguitude of the yen's depreciation rate, in order to keep market share in the aforementioned five countries' total exports to the U.S.. Finally, this study provides additional information which may support empirical findings on the competitive relations among the Asian NIEs and Japan. The correlation matrices among the strutures of those five countries' exports to the U.S.. during the 1970s and 1980s were estimated, with the export structure constructed as the shares of each of the 29 industrial sectors' exports as defined by the 3 digit KSIC in total exports to the U.S. from each individual country. In general, the correlation between each of the four Asian NIEs and Japan, and that between Hong Kong and Singapore, are all far below .5, while the ones among the Asian NIEs themselves (except for the one between Hong Kong and Singapore) all greatly exceed .5. If there exists a tendency on the part of the U.S. to import goods in each specific sector from different countries in a relatively constant proportion, the export structures of those countries will probably exhibit a high correlation. To take this hypothesis to the extreme, if the U.S. maintained an absolutely fixed ratio between its imports from any two countries for each of the 29 sectors, the correlation between the export structures of these two countries would be perfect. Therefore, since any two goods purchased in a fixed proportion could be classified as close complements, a high correlation between export structures will imply a complementary relationship between them. Conversely, low correlation would imply a competitive relationship. According to this interpretation, the pattern formed by the correlation coefficients among the five countries' export structures to the U.S. are consistent with the empirical findings of the regression analysis.

  • PDF

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Comparison and Evaluation of the Effectiveness between Respiratory Gating Method Applying The Flow Mode and Additional Gated Method in PET/CT Scanning. (PET/CT 검사에서 Flow mode를 적용한 Respiratory Gating Method 촬영과 추가 Gating 촬영의 비교 및 유용성 평가)

  • Jang, Donghoon;Kim, Kyunghun;Lee, Jinhyung;Cho, Hyunduk;Park, Sohyun;Park, Youngjae;Lee, Inwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.54-59
    • /
    • 2017
  • Purpose The present study aimed at assessing the effectiveness of the respiratory gating method used in the flow mode and additional localized respiratory-gated imaging, which differs from the step and go method. Materials and Methods Respiratory gated imaging was performed in the flow mode to twenty patients with lung cancer (10 patients with stable signals and 10 patients with unstable signals), who underwent PET/CT scanning of the torso using Biograph mCT Flow PET/CT at Bundang Seoul University Hospital from June 2016 to September 2016. Additional images of the lungs were obtained by using the respiratory gating method. SUVmax, SUVmean, and Tumor Volume ($cm^3$) of non-gating images, gating images, and additional lung gating images were found with Syngo,bia (Siemens, Germany). A paired t-test was performed with GraphPad Prism6, and changes in the width of the amplitude range were compared between the two types of gating images. Results The following results were obtained from all patients when the respiratory gating method was applied: $SUV_{max}=9.43{\pm}3.93$, $SUV_{mean}=1.77{\pm}0.89$, and $Tumor\;Volume=4.17{\pm}2.41$ for the non-gating images, $SUV_{max}=10.08{\pm}4.07$, $SUV_{mean}=1.75{\pm}0.81$, and $Tumor\;Volume=3.56{\pm}2.11$ for the gating images, and $SUV_{max}=10.86{\pm}4.36$, $SUV_{mean}=1.77{\pm}0.85$, $Tumor\;Volume=3.36{\pm}1.98$ for the additional lung gating images. No statistically significant difference in the values of $SUV_{mean}$ was found between the non-gating and gating images, and between the gating and lung gating images (P>0.05). A significant difference in the values of $SUV_{max}$ and Tumor Volume were found between the aforementioned groups (P<0.05). The width of the amplitude range was smaller for lung gating images than gating images for 12 from 20 patients (3 patients with stable signals, 9 patients with unstable signals). Conclusion In PET/CT scanning using the respiratory gating method in the flow mode, any lesion movements caused by respiration were adjusted; therefore, more accurate measurements of $SUV_{max}$, and Tumor Volume could be obtained from the gating images than the non-gating images in this study. In addition, the width of the amplitude range decreased according to the stability of respiration to a more significant degree in the additional lung gating images than the gating images. We found that gating images provide information that is more useful for diagnosis than the one provided by non-gating images. For patients with irregular signals, it may be helpful to perform localized scanning additionally if time allows.

  • PDF