• Title/Summary/Keyword: mouse oocytes

Search Result 280, Processing Time 0.03 seconds

CLEAVAGE OF MOUSE OOCYTES AFTER THE INJECTION OF IMMOBILIZED, KILLED SPERMATOZOA

  • Goto, K.;Kinoshita, A.;Kuroda, A.;Nakanishi, Y.;Ogawa, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.3
    • /
    • pp.251-254
    • /
    • 1991
  • Immobilized (killed) mouse spermatozoa or sperm head were microinjected into mouse oocytes matured in vivo and cultured for 72h in vitro. When non-capacitated spermatozoon was injected, oocytes that developed to $${\geq_-}$$ 2-cell and $${\geq_-}$$ 4-cell was 27.8 (15/54) and 3.7% (2/54), respectively. When non-capacitated sperm head was injected. development to $${\geq_-}$$ 2-cell and $${\geq_-}$$ 4-cell was 21.3 (16/75) and 8.0% (6/75), respectively. When capacitated spermatozoon was injected, development to $${\geq_-}$$ 2-cell and $${\geq_-}$$ 4-cell was 21.4 (15/70) and 4.3% (3/70), respectively. When capacitated sperm head was injected, development to $${\geq_-}$$ 2-cell and $${\geq_-}$$ 4-cell was 29.9 (35/117) and 10.3% (12/117), respectively. In contrast, none developed beyond 4-cell in the sham-operated group. The results of this study demonstrated that mouse oocytes matured in vivo can undergo normal appearing cleavage to 4-cell stage by dead-sperm injection. Sperm treatment prior to injection did not affect the ability of mouse oocytes to cleave in vitro.

Development of Effective Cryopreservation Method for Mouse Oocytes (생쥐 난자의 효율적인 냉동보존 방법 확립을 위한 연구)

  • Choi, Su-Jin;Kim, Soo-Kyung;Kim, Ji-Sun;Cho, Jae-Won;Jun, Jin-Hyun;Byun, Hye-Kyung
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • Objective: The purpose of this study was to evaluate the efficacy and effect of various cryopreservation method on the survival and the cytoskeletal stability of metaphase II mouse oocyte. Methods: Mouse ovulated oocytes were collected and cryopreserved by a modified slow-freezing method with 1.5 M 1, 2-propanediol (PrOH)+0.1 M sucrose or by vitrification using cryo loop and EM grid with 40% ethylene glycol+0.6 M sucrose. Four hours after thawing, intact oocytes were fixed and stained with fluorescein isothiocyanate (FITC)-conjugated monoclonal anti-$\beta$-tubulin antibody to visualize spindle and propidium iodide (PI) to visualize chromosome. Spindle morphology was classified as follows: normal (barrel-shaped), slightly and absolute abnormal (multipolar or absent). Results: Survival rate of the frozen-thawed oocytes in vitrification group was significantly higher than that of slow-freezing group (62.7% vs. 24.4%, p<0.01). Vitrification with cryo loop showed significantly higher survival rate than that with EM grid (67.7% vs. 53.5%, p<0.05). On the other hand, proportion of normal spindle and chromosome configurations of the frozen-thawed oocytes between two vitrification group was not significantly different. Conclusion: For mouse ovulated oocytes, vitrification with cryo loop may be a preferable procedure compared to slow-freezing method. Further study should be needed to investigate developmental competency of frozen-thawed mouse oocytes.

Alteration of Spindle Formation and Chromosome Alignment in Post-Ovulatory Aging of Mouse Oocytes

  • Kang, Hee-Gyoo;Cha, Byung-Hun;Jun, Jin-Hyun
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.231-237
    • /
    • 2011
  • The objective of this study was to elucidate the dynamics of microtubules in post-ovulatory aging in vivo and in vitro of mouse oocytes. The fresh ovulated oocytes were obtained from oviducts of superovulated female ICR mice at 16 hours after hCG injection. The post-ovulatory aged oocytes were collected at 24 and 48 hours after hCG injection from in vivo and in vitro, respectively. Immunocytochemistry was performed on ${\beta}$-tubulin and acetylated ${\alpha}$-tubulin. The microtubules were localized in the spindle assembly, which was barrel-shaped or slightly pointed at its poles and located peripherally in the fresh ovulated oocytes. The frequency of misaligned metaphase chromosomes were significantly increased in post-ovulatory aged oocytes after 48 hours of hCG injection. The spindle length and width of post-ovulatory aged oocytes were significantly different from those of fresh ovulated oocytes, respectively. The staining intensity of acetylated ${\alpha}$-tubulin showed stronger in post-ovulatory aged oocytes than that in the fresh ovulated oocytes. In the aged oocytes, the spindles had moved towards the center of the oocytes from their original peripheral position and elongated, compared with the fresh ovulated oocytes. Microtubule organizing centers were formed and observed in the cytoplasm of the aged oocytes. On the contrary, it was not observed in the fresh ovulated oocytes. The alteration of spindle formation and chromosomes alignment substantiates the poor development and the increase of disorders from the post-ovulatory aged oocytes. It might be important to fertilize on time in ovulated oocytes for the developmental competence of embryos with normal karyotypes.

Effects of Follicle Cells on the Chymotrypsin Resistance of Mouse Oocytes (난포세포가 생쥐 난자의 Chymotrypsin에 대한 내성에 미치는 영향)

  • Kim, Seong-Im;Bae, In-Ha;Kim, Hae-Kwon;Kim, Sung-Rye
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.407-417
    • /
    • 1999
  • Objective: Mammalian follicle cells are the most important somatic cells which help oocytes grow, mature and ovulate and thus are believed to provide oocytes with various functional and structural components. In the present study we have examined whether cumulus or granulosa cells might playa role in establishing the plasma membrane structure of mouse oocytes during meiotic maturation. Design: In particular the differential resistances of mouse oocytes against chymotrypsin treatment were examined following culture with or without cumulus or granulosa cells, or in these cell-conditioned media. Results: When mouse denuded oocytes, freed from their surrounding cumulus cells, were cultured in vitro for $17{\sim}18hr$ and then treated with 1% chymotrypsin, half of the oocytes underwent degeneration within 37.5 min ($t_{50}=37.5{\pm}7.5min$) after the treatment. In contrast cumulus-enclosed oocytes showed $t_{50}=207.0$. Similarly, when oocytes were co-cultured with cumulus cells which were not associated with the oocytes but present in the same medium, the $t_{50}$ of co-cultured oocytes was $177.5{\pm}13.1min$. Furthermore, when oocytes were cultured in the cumulus cell-conditioned medium, $t_{50}$ of these oocytes was $190.0{\pm}10.8min$ whereas $t_{50}$ of the oocytes cultured in M16 alone was $25.5{\pm}2.9min$. Granulosa cell-conditioned medium also increased the resistance of oocytes against chymotrypsin treatment such that $t_{50}$ of oocytes cultured in granulosa cell-conditioned medium was $152.5{\pm}19.0min$ while that of oocytes cultured in M16 alone was $70.0{\pm}8.2min$. To see what molecular components of follicle cell-conditioned medium are involved in the above effects, the granulosa cell-conditioned medium was separated into two fractions by using Microcon-10 membrane filter having a 10 kDa cut-off range. When denuded oocytes were cultured in medium containing the retentate, $t_{50}$ of the oocytes was $70.0{\pm}10.5min$. In contrast, $t_{50}$ of the denuded oocytes cultured in medium containing the filtrate was $142.0{\pm}26.5min$. $T_{50}$ of denuded oocytes cultured in medium containing both retentate and filtrate was $188.0{\pm}13.6min$. However, $t_{50}$ of denuded oocytes cultured in M16 alone was $70.0{\pm}11.0min$ and that of oocytes cultured in whole granulosa cell-conditioned medium was $156.0{\pm}27.9min$. When surface membrane proteins of oocytes were electrophoretically analyzed, no difference was found between the protein profiles of oocytes cultured in M16 alone and of those cultured in the filtrate. Conclusions: Based upon these results, it is concluded that mouse follicle cells secrete a factor(s) which enhance the resistance of mouse oocytes against a proteolytic enzyme treatment. The factor appears to be a small molecules having a molecular weight less than 10 kDa.

  • PDF

Rapamycin Influences the Efficiency of In vitro Fertilization and Development in the Mouse: A Role for Autophagic Activation

  • Lee, Geun-Kyung;Shin, Hyejin;Lim, Hyunjung Jade
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1102-1110
    • /
    • 2016
  • The mammalian target of rapamycin (mTOR) regulates cellular processes such as cell growth, metabolism, transcription, translation, and autophagy. Rapamycin is a selective inhibitor of mTOR, and induces autophagy in various systems. Autophagy contributes to clearance and recycling of macromolecules and organelles in response to stress. We previously reported that vitrified-warmed mouse oocytes show acute increases in autophagy during warming, and suggested that it is a natural response to cold stress. In this follow-up study, we examined whether the modulation of autophagy influences survival, fertilization, and developmental rates of vitrified-warmed mouse oocytes. We used rapamycin to enhance autophagy in metaphase II (MII) oocytes before and after vitrification. The oocytes were then subjected to in vitro fertilization (IVF). The fertilization and developmental rates of vitrified-warmed oocytes after rapamycin treatment were significantly lower than those for control groups. Modulation of autophagy with rapamycin treatment shows that rapamycin-induced autophagy exerts a negative influence on fertilization and development of vitrified-warmed oocytes.

In Vitro Developmental Ability of Mouse Oocytes following Cold-culture (생쥐 난자의 Cold-culture에 따른 체외 발생 능력)

  • 정구민;신영수
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.4
    • /
    • pp.473-477
    • /
    • 1997
  • This research was performed to investigate the developmental ability of mouse oocytes following cold-culture(4$^{\circ}C$) in vitro. When the oocytes were fertilized after 10 hour cold-culture in D-PBS or Ham's F10 with 0.3% BSA, the cleavage rage of the oocytes was not different in the rate of oocytes fertilized in vitro without cold-culture(126/189, 66.2% vs 88/133, 66.7%) and also the rate of embryos developed to blastocyst did not(123/189, 65.1% vs 82/133). But, when the time of the cold-cultre was extended from 10 to 24 hours, the rate of embryos developed to blastocyst was slightly decreased(73.5% vs 52.2%). However, when the oocytes were cultured for 10 and 24hours at 37$^{\circ}C$, the rate of oocytes developed to blastocyst was significantly decreased than that of oocytes following cold-culture. By the results of this study, it'll be possible to utilize effectively the cold-culture of the oocytes when in vitro fertilization is delayed.

  • PDF

Fertilization of Porcine Oocytes and Culture of Embryo in Hydrogel Chambers implanted in the Peritoneal Cavity of intermediate Mouse Recipients (Mouse 복강내에 이식되 Hydrogel Chamber내에서의 돼지난포세포의 수정 및 배양에 관한 연구)

  • 김명철;신상태;박창식;이규승
    • Korean Journal of Animal Reproduction
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 1992
  • In viro fertilizatin is very important in both human clinical practice and animal breeding. However, the success rate of in vitro fertilization is not high. The purpose of this study ws to determine wheter in the vitro fertilization and culture of porcine oocyte using a hydrogel chamber were possible or not. Hydrogel chambers were made of polymerized 2-hydroxyethyl methacrylate. Matured follicular oocytes in Waymouth's medium and T L Hepes medium, tubal oocytes, and preincubated sperm in M199 medium were treansferred into the lumen of the hydrogel chambers. The chambers containing porcine oocytes and spermatozoa implanted into the mouse peritioneal cavity, and ova were examined after the recovery of the chambers at 84 hours after preservation start. The result was shown that fertilization and culture of porcine oocytes were successfully achieved inside of the hydrogel chamber.

  • PDF

Efficiency of Vitrification using Conventional Straw and Grid as a Vihicle in Mouse Oocytes (마우스 성숙난자의 Straw와 Grid를 이용한 유리화동결법의 효율성 검토)

  • 정형민;박이석;박성은
    • Journal of Embryo Transfer
    • /
    • v.16 no.3
    • /
    • pp.233-237
    • /
    • 2001
  • To develop an effective vitrification method, we examined the use of a conventional straw as vessel fur vitrification of mouse oocytes, and to compare the post-thaw survival and chromosome configuration of these oocytes with those vitrified in grids. Intact cumulus-enclosed oocytes were vitrified with DPBS with 5.5 M ethylene glycol and 1.0 M sucrose, and loaded into straws and onto eletron microscopic copper grid fur storing in liquid nitrogen. Intact vitrified and thawed oocytes were karyotying for chromosome. The rates of post-thawed survival were 88.5% in vitrified oocytes with straws, and 83% in vitrified ooctyes with grids. Vitrified and thawed oocytes with straws and grids were increased chromosomal abnormality (31.4% and 30.9%) compared with fresh oocytes (17.8%). The conventional straws can be used as vessel for vitrification to prevent of inflection in liquid nitrogen.

  • PDF

In Vitro Growth and Development of Mouse Preantral Follicles

  • Kim, Dong-Hoon
    • Proceedings of the KSAR Conference
    • /
    • 2000.10a
    • /
    • pp.9-9
    • /
    • 2000
  • The mammalian ovary has a large number of primordial and preantral follicles, which are a potential source of oocytes for the in vitro mass production of embryos. Several in vitro culture systems have been developed to support the growth and development of oocytes from mouse preantral follicles. Under the appropriate condition, meiotically incompetent oocytes from preantral follicles can grow to final size and complete nuclear maturation in vitro. Furthermore, the successful production of live young from in vitro grown and matured oocytes demonstrates that oocytes from preantral follicles are able to acquire full developmental capacity in vitro. However, the efficiency of in vitro production of embryos from mouse preantral follicles is still low. In farm animals as well as human, the growth of oocyte from preantral follicle to the meiotic competence stage has yet to be demonstrate. Therefore, further studies to improve the culture condition or to develope new culture system should be needed in the future. In addition, the visible progress in the establishment of the in vitro culture system for preantral follicles of farm animals and human could help to enlarge the populations of valuable agricultural, phamaceutical product-producing, and endangered animals, and to rescue the oocytes of women about to undergo clinical procedures that jeopardize oocytes.

  • PDF

Fertilization by Microinjection of Mouse Round Spermatid (생쥐 원형정자세포의 미세주입에 의한 수정)

  • 이상민;백청순;구덕본;김묘경;김진회;박흠대;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.3
    • /
    • pp.171-179
    • /
    • 1995
  • This study was carried out to investigate the fertilizing ability of round spematids isolated from seminiferous tubules. A round spermatid was introduced into the perivitelline space of a mature oocyte using Leitz micromanipulators and then subjected to electrofusion. Electrofusion was induced by applying a single DC pulse of 90V with a duration of 60$\mu$sec using Model 611 Square Wave Stimulator(Phipps and Bird, U.S.A) in 0.3 M sucrose fusion medium containing 0.05mM CaCl2 and 0.1mM MgSO4, Oocyte pre-activation was conducted by exposure to a single DC(80V, 80$\mu$sec) pulse in electrofusion medium at 1 hour before electrofusion. The incidence of fusion with pre-activated oocytes(23.8%, 57/239) was higher than that with nonactivated oocytes(6.7%, 3/45). The most of electro-stimulated mouse oocytes cleaved regardless of the success or failure of fusion. Karyotyping of embryos that developed into blastocysts after exposure to the fusion pulse were performe. We found that blastocysts from the fused oocytes were diploid whereas blastocysts from the unfused oocytes were haploid. About 11.7 and 11.5% of fused and unfused oocytes were developmental potentials of fused and unfused oocytes. Therefore, these results suggest that the mouse mture oocyte can be fertilized by fusion with a round spermtid and subsequently developed normally.

  • PDF