• 제목/요약/키워드: mountain-valley wind

검색결과 37건 처리시간 0.025초

대구 앞산 달비골의 국지풍 특성에 관한 관측적 연구 (Observational Study on the Local Wind of the Dalbi-Valley Located at Ap-Mountain in Daegu)

  • 구현숙;권병혁;김해동
    • 한국환경과학회지
    • /
    • 제16권1호
    • /
    • pp.73-79
    • /
    • 2007
  • The purpose of this study is to clarify the effect of mountain-valley wind on heat island formed in urban area which is located around valley mouth. The meteorological observations were carried out over the Dalbi-valley under a clear summer pressure patterns, and some consideration were tried from the results. In order to make clear the climatological characteristics and air-mass modification process of the mountain-valley wind over the valley, the meteorological observations were done simultaneously at two points. The observational points were located at the breast and valley mouth parts, respectively. The results were as follows: First, it was found that the valley wind was observed through the daytime, and it was replaced by a mountain wind after sunset. Second, the heat budget is also investigated with observation data. The sensible heat flux over the breast of Dalbi-valley reached to about $200 W/m^2$ during daytime, which is a little more than one third of net radiation. On the other hand, the sensible heat flux represented negative values during nighttime. But the sensible heat flux over the valley mouth covered by asphalt showed plus value(about $20{\sim}30 W/m^2$) during the nighttime.

연구노트 산사면에서의 야간 기상요소의 특성에 관한 연구 (On Study on Chatacteristics of Nocturnal Meteorological Parameter at Mountain Slope)

  • 전병일;박재림;박현철
    • 한국환경과학회지
    • /
    • 제8권5호
    • /
    • pp.633-637
    • /
    • 1999
  • A series of meterological observation using automation weather station(AWS) carried out to investigate characteristics of nocturnal meteorological parameters for 16~17 June 1998 at Buljeongdong mountain slope, Kyungbuk. Dry temperature at valley was lower than mountain because of high lapse rate at valley, so the strong inversion layer occurrenced at mountain slope for nighttime. Contrary of dry temperature, relative humidity of valley was higher than mountain for nighttime. Wind speed at valley from sunset to next day morning was lower than mountain, but that of valley after sunrise was higher than mountain. Wind direction at valley for all observation time were southeasterlies(SE), that of mountain for nighttime were northeasterlies(NE) or northnorthwesterlies(NNW), and that of mountain after sunrise were irregular. Vapor pressure at valley for all observation time was higher mountain, particularly the difference was high for nighttime.

  • PDF

연안복합지형에서 바람폭풍의 진화 (Evolution of Wind Storm over Coastal Complex Terrain)

  • 최효;서장원;남재철
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.865-880
    • /
    • 2002
  • As prevailing synoptic scale westerly wind blowing over high steep Mt. Taegulyang in the west of Kangnung coastal city toward the Sea of Japan became downslope wind and easterly upslope wind combined with both valley wind and sea breeze(valley-sea breeze) also blew from the sea toward the top of the mountain, two different kinds of wind regimes confronted each other in the mid of eastern slope of the mountain and further downward motion of downlsope wind along the eastern slope of the mountain should be prohibited by the upslope wind. Then, the upslope wind away from the eastern slope of the mountain went up to 1700m height over the ground, becoming an easterly return flow in the upper level of the sea. Two kinds of circulations were detected with a small one in the coastal sea and a large one from the coast toward the open sea. Convective boundary layer was developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west, while a thickness of thermal internal boundary layer(TIBL) form the coast along the eastern slope of the mountain was only confined to less than 200m. After sunset, under no prohibition of upslope wind, westerly downslope wind blew from the top of the mountain toward the coastal basin and the downslope wind should be intensified by both mountain wind and land breeze(mountain-land breeze) induced by nighttime radiative cooling of the ground surfaces, resulting in the formation of downslope wind storm. The wind storm caused the development of internal gravity waves with hydraulic jump motion bounding up toward the upper level of the sea in the coastal plain and relatively moderate wind on the sea.

도시 열환경 개선을 위한 국지순환풍의 역할에 관한 연구 (The Role of Local Circulation for the Improvement on Urban Thermal Environment)

  • 박명희;정우식;김해동
    • 한국환경과학회지
    • /
    • 제19권10호
    • /
    • pp.1257-1269
    • /
    • 2010
  • In this study the AWS was installed in three areas to analyze creation and characteristics of local wind circulation through observation. According to the result, in night time when mountain wind is well developed showed temperature in A area located in Dalbigol valley and B area adjacent with the valley was lower than C area located in the lowland of the center of city by $1.5\sim4^{\circ}C$. The wind speed was also shown two times stronger than C area. In addition, in terms of wind direction, A and B areas showed east wind consistently according to topographic shapes of Dalbigol valley with high altitude and residential sites of lowland with low altitude. Although the C area didn't show big changes in wind direction due to the effects of city structures, east wind is often seen so mountain wind from Dalbigol valley is found to have an effect at least. Through the analysis of temperature, wind speed, and wind direction, nigh time showed relatively cold mountain wind blew following Dalbigol valley, throughout residential sites and to the center of city with lowland. During the daytime, the temperature in the city with lowland and residential sites is constantly higher than A area located in Dalbigol valley, and strong wind speed following Dalbigol valley, and three areas have $200\sim300^{\circ}$ of main wind direction, so west valley wind throughout the city with lowland and following Dalbigol is clearly formed.

Numerical simulations of mountain winds in an alpine valley

  • Cantelli, Antonio;Monti, Paolo;Leuzzi, Giovanni;Valerio, Giulia;Pilotti, Marco
    • Wind and Structures
    • /
    • 제24권6호
    • /
    • pp.565-578
    • /
    • 2017
  • The meteorological model WRF is used to investigate the wind circulation in Valle Camonica, Italy, an alpine valley that includes a large subalpine lake. The aim was to obtain the information necessary to evaluate the wind potential of this area and, from a methodological point of view, to suggest how numerical modeling can be used to locate the most interesting spots for wind exploitation. Two simulations are carried out in order to analyze typical scenarios occurring in the valley. In the first one, the diurnal cycle of thermally-induced winds generated by the heating-cooling of the mountain range encircling the valley is analyzed. The results show that the mountain slopes strongly affect the low-level winds during both daytime and nighttime, and that the correct setting of the lake temperature improves the quality of the meteorological fields provided by WRF significantly. The second simulation deals with an event of strong downslope winds caused by the passage of a cold front. Comparisons between simulated and measured wind speed, direction and air temperature are also shown.

속초연안에서 대기순환의 특성 (Characteristics of Atmospheric Circulation in Sokcho Coast)

  • 최효
    • 한국환경과학회지
    • /
    • 제14권1호
    • /
    • pp.41-51
    • /
    • 2005
  • Using three-dimensional non-hydrostatical numerical model with one way double nesting technique, atmo­spheric circulation in the mountainous coastal region in summer was investigated from August 13 through 15, 1995. During the day, synoptic westerly wind blows over Mt. Mishrung in the west of a coastal city, Sokcho toward the East Sea, while simultaneously, easterly upslope wind combined with both valley wind from plain (coast) toward mountain and sea-breeze from sea toward inland coast blows toward the top of the mountain. Two different directional wind systems confront each other in the mid of eastern slope of the mountain and the upslope wind goes up to the height over 2 km, becoming an easterly return flow in the upper level over the sea and making sea-breeze front with two kinds of sea-breeze circulations of a small one in the coast and a large one in the open sea. Convective boundary layer is developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west and a thickness of thermal internal boundary layer from the coast along the eastern slope of the mountain is only confined to less than 200 m. On the other hand, after sunset, no prohibition of upslope wind generated during the day and downward wind combined with mountain wind from mountain towardplain and land-breeze from land toward under nocturnal radiative cooling of the ground surfaces should intensify westerly downslope wind, resulting in the formation of wind storm. As the wind storm moving down along the eastern slop causes the development of internal gravity waves with hydraulic jump motion in the coast, bounding up toward the upper level of the coastal sea, atmospheric circulation with both onshore and offshore winds like sea-breeze circulation forms in the coastal sea within 70 km until midnight and after that, westerly wind prevails in the coast and open seas.

Tropical Night (Nocturnal Thermal High) in the Mountainous Coastal City

  • Choi, Hyo
    • 한국환경과학회지
    • /
    • 제13권11호
    • /
    • pp.965-985
    • /
    • 2004
  • The investigation of driving mechanism for the formation of tropical night in the coastal region, defined as persistent high air temperature over than 25$^{\circ}C$ at night was carried out from August 14 through 15, 1995. Convective boundary layer (CBL) of a 1 km depth with big turbulent vertical diffusion coefficients is developed over the ground surface of the inland basin in the west of the mountain and near the top of the mountain, while a depth of thermal internal boundary layer (TIBL) like CBL shrunken by relatively cool sea breeze starting at 100 km off the eastern sea is less than 150 m from the coast along the eastern slope of the mountain. The TIBL extends up to the height of 1500 m parallel to upslope wind combined with valley wind and easterly sea breeze from the sea. As sensible heat flux convergences between the surface and lower atmosphere both at the top of mountain and the inland coast are much greater than on the coastal sea, sensible heat flux should be accumulated inside both the TIBL and the CBL near the mountain top and then, accumulated sensible heat flux under the influence of sea breeze circulation combined with easterly sea breeze from sea to inland and uplifted valley wind from inland to the mountain top returning down toward the eastern coastal sea surface should be transported into the coast, resulting in high air temperatures near the coastal inland. Under nighttime cooling of ground surface after sunset, mountain wind causes the daytime existed westerly wind to be an intensified westerly downslope wind and land breeze further induces it to be strong offshore wind. No sensible heat flux divergence or very small flux divergence occurs in the coast, but the flux divergences are much greater on the top of the mountain and along its eastern slope than on the coastal inland and sea surfaces. Thus, less cooling down of the coastal surface than the mountain surface and sensible heat transfer from warm pool over the coast into the coastal surface produce nocturnal high air temperature on the coastal inland surfaces, which is not much changed from daytime ones, resulting in the persistence of tropical night (nocturnal thermal high) until the early in the morning.

중규모 국지 순환에서 대기 오염 물질의 확산에 관한 연구 (A Study on the Dispersion of Air Pollutants in Local Circulation of Mesoscale)

  • 이화운;오은주
    • 한국환경과학회지
    • /
    • 제3권1호
    • /
    • pp.39-47
    • /
    • 1994
  • Dispersion characteristics of air pollutants in the mountainous coastal area are investigated in considering with the mesoscale local circulations using a two dimensional numerical model with two kinds of topograpy of 500m and 300m. In the model, land-sea breezes and mountain-valley wind are mainly considered under the condition of the absence of large scale prevailing flow in the circulation analysis, and the pollutants dispersion is traced by the Lagrangian methods. According to the results, the wind velocity is affected by topography and is stronger in the case of 500m height mountain than that of 300m, the Pollutants that source is near the coast transported over the mountain and dispersed to behind inland area. It is classified that the topography change control affects the wind velocity and the circulations. The pollutants that source is different transported and concentrated to behind inland and/or diffused to the sea area by the combination of the wind system with topographic changes. The results can be applied to the air pollution control with the arrangement design of industrial area and the planning of coastal developments.

  • PDF

Characteristics of downslope winds in the Liguria Region

  • Burlando, Massimiliano;Tizzi, Marco;Solari, Giovanni
    • Wind and Structures
    • /
    • 제24권6호
    • /
    • pp.613-635
    • /
    • 2017
  • Strong downslope windstorms often occur in the Liguria Region. This part of North-Western Italy is characterised by an almost continuous mountain range along its West-East axis consisting of Maritime Alps and Apennines, which separate the Padan Plain to the North from the Mediterranean Sea to the South. Along this mountain range many valleys occur, frequently perpendicular to the mountain range axis, where strong gap flows sometimes develop from the top of the mountains ridge to the sea. In the framework of the European projects "Wind and Ports" and "Wind, Ports, and Sea", an anemometric monitoring network made up of 15 (ultra)sonic anemometric stations and 2 LiDARs has been realised in the three main commercial ports of Liguria. Thanks to this network two investigations are herein carried out. First, the wind climatology and the main statistical parameters of one Liguria valley have been studied through the analysis of the measurements taken along a period of 4 years by the anemometer placed at its southern exit. Then, the main characteristics of two strong gap flows that occurred in two distinct valley of Liguria are examined. Both these studies focus, on the one hand, on the climatological and meteorological characterisation of the downslope wind events and, on the other hand, on their most relevant quantities that can affect wind engineering problems.

고밀도 도시기후관측 망 자료를 이용한 대구의 여름철 기온 수평 공간 분포의 일변화 (Diurnal Variations in the Horizontal Temperature Distribution using the High Density Urban Climate Observation Network of Daegu in Summer)

  • 김상현;김백조;김해동
    • 한국환경과학회지
    • /
    • 제25권2호
    • /
    • pp.259-265
    • /
    • 2016
  • We analyzed diurnal variations in the surface air temperature using the high density urban climate observation network of Daegu in summer, 2013. We compared the time elements, which are characterized by the diurnal variation of surface air temperature. The warming and cooling rates in rural areas are faster than in urban areas. It is mainly due to the difference of surface heat capacity. In addition, local wind circulation also affects the discrepancy of thermal spatiotemporal distribution in Daegu. Namely, the valley and mountain breezes affect diurnal variation of horizontal distribution of air temperature. During daytimes, the air(valley breeze) flows up from urban located at lowlands to higher altitudes of rural areas. The temperature of valley breeze rises gradually as it flows from lowland to upland. Hence the difference of air temperature decreases between urban and rural areas. At nighttime, the mountains cool more rapidly than do low-lying areas, so the air(mountain breeze) becomes denser and sinks toward the valleys(lowlands). As the result, the air temperature becomes lower in rural areas than in urban areas.