• Title/Summary/Keyword: mountain complex

Search Result 150, Processing Time 0.022 seconds

A Study on the Ponds of the Korean Traditional Temples (한국 전통사찰의 인공지 연구)

  • 권태철;홍광표
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.80-94
    • /
    • 1999
  • The purpose of this study is to analyze and interpret the ponds appeared in the Korean traditional temples. Summarized findings are as follows: First, it appeared that the location of ponds of the Korean traditional temples is, in general, in both the entry space and transitional space of temple. And it is considered that such configurations of the location of ponds were done intentionally in order that the ponds should have a significance as same as the concept that a natural mountain stream separates the sacred place and the secular world. Second, since the size of the ponds appeared in the temples are considered to be what is transformed from the original one, it is hard to understand the real size. However, it is judged that since ponds we see at present played an element of the total space of a temple it is deemed that no significant change of the size of ponds have happened if the size of the structure a temple itself has ever changed. Third, it appeared that the forms of the temple's ponds are diversified in a square, oval, egg-shaped one, round shape(circle), natural shape, etc. and it is identified that most of the ponds inspected for this study appeared to be in shapes of an oval, egg-shaped one, and round shape which take a typical curve. Fourth, regarding the temples whose origins are from the Baekje dynasty or Shilla dynasty among the objects of this case study, there appear some uniform styles for each temple respectively. For example, in both the Junglim Temple's twin pond(定林寺 雙池) and the Mireuk Temple's twin pond(彌勒寺 雙池) which were built in the Baekje dynasty appears a twin-pond in a square shape, and in the Bulkuk temple(佛國寺), Haein temple(海印寺), Tongdo temple(通度寺), etc. which were built in the Silla dynasty appears the ponds in an egg-shape one. Fifth, regarding the function of the ponds appeared in the temples, the ponds are characterized with a lotus pond(蓮池), reflecting pond(影池), and pond complex(蓮 . 影池). In consideration of the 20 ponds in the 15 places of this study's object, there are 8 lotus ponds(蓮池), 6 reflecting ponds(影池), and 6 ponds complex(蓮 . 影池).

  • PDF

The Analysis of Regional Scale Topographic Effect Using MM5-A2C Coupling Modeling (국지규모 지형영향을 고려하기 위한 MM5-A2C 결합 모델링 특성 분석)

  • Choi, Hyun-Jeong;Lee, Soon-Hwan;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.210-221
    • /
    • 2015
  • The terrain features and surface characteristics are the most important elements not only in meteorological modeling but also in air quality modeling. The diurnal evolution of local climate over complex terrain may be significantly controlled by the ground irregularities. Such topographic features can affect a thermally driven flow, either directly by causing changes in the wind direction or indirectly, by inducing significant variations in the ground temperature. Over a complex terrain, these variations are due to the nonuniform distribution of solar radiation, which is highly determined by the ground geometrical characteristics, i.e. slope and orientation. Therefore, the accuracy of prediction of regional scale circulation is strong associated with the accuracy of land-use and topographic information in meso-scale circulation assessment. The objective of this work is a numerical simulation using MM5-A2C model with the detailed topography and land-use information as the surface boundary conditions of the air flow field in mountain regions. Meteorological conditions estimated by MM5-A2C command a great influence on the dispersion of mountain areas with the reasonable feature of topography where there is an important difference in orographic forcing.

Applicability of Daily Solar Radiation Estimated by Mountain Microclimate Simulation Model (MT-CLIM) in Korea (MT-CLIM 프로그램을 이용한 일별 일사량 추정의 국내 적용성 검토)

  • Shim, Kyo Moon;Kim, Yong Seok;Lee, Deog Bae;Kang, Ki Keong;So, Kyo-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.260-264
    • /
    • 2012
  • Accuracy of daily solar radiation estimated from a Mountain Microclimate Simulation Model (MT-CLIM) was assessed for seven observation sites with complex topography in Uiseong County. The coefficient of determination ($R^2$) between the observed and the estimated daily solar radiation was 0.52 for 7 sites for the study period from 1 August to 30 September 2009. Overall, the MT-CLIM overestimated the solar radiation with root mean square error (RMSE) of $3.83MJ\;m^{-2}$ which is about 25% of the mean daily solar radiation ($15.27MJ\;m^{-2}$) for the study period. Considering that the pyranometer's tolerance is ${\pm}5%$ of standard sensor, the RMSE of MT-CLIM was too large to accept for a direct application for agricultural sector. The reliability of solar radiation estimated by MT-CLIM must be improved by considering additional ways such as using a topography correction coefficient.

A Numerical Study for the Air Flow on Complex Terrain (복잡지형의 공기흐름에 대한 수치해석 연구)

  • Park, Mi Sun;Jeong, Hae Sun;Jeong, Hyo Joon;Hwang, Won Tae;Kim, Eun Han;Han, Moon Hee;Kim, Hey Suk
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • The interpretation on the diffusion of radiation contaminants in air is usually to apply a Gaussian plume equation that obtains normal distributions in stable air flow conditions to draw a conservative conclusion. In this study, a numerical study using computational fluid dynamics methods was performed to interpret the air flow pattern and the diffusion of the radiation contaminants at the Wolseong nuclear power plants, and a more detailed solution can be obtained than the Gaussian plume equation, which is difficult to use to simulate complex terrains. The results show that a significant fluctuation of air flow in the terrain appears in the case of a northwester and southeaster because of the mountain located in the northwest and the sea located in the south-east. The northwesterly air flow shows the most unstable flow in the vertical direction when it passes over the terrain of mountain. The stable southeasterly air flow enters into the nuclear power plant from the sea, but it becomes unstable rapidly because of the interference by the building and the terrain. On the other hand, in the case of a northeaster and southwester, a small interruption of air flow is caused by the terrain and wake behind the buildings of nuclear power plants.

The Relationship of Froude Number and Developed Cloud Band Locations Near Yeongdong Region Under the Siberian High Pressure System (시베리아 고기압 영향으로 영동지역 부근에서 발달한 구름대의 위치와 Froude 수와의 관계)

  • Kim, Yu-Jin;Kim, Man-Ki;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.325-342
    • /
    • 2019
  • Precipitation and no-precipitation events under the influence of the Siberian high pressure system in Yeondong region, were analysed and classified as four types [obvious precipitation event (OP) type, obvious no-precipitation event (ON) type, ambiguous precipitation event (AP) type and ambiguous no-precipitation event (AN) type], according to the easiness in determining whether to have precipitation or not in Yeongdong region, to help in improving the forecast skill. Concerning the synoptic pressure pattern, for OP type, the ridge of Siberian high extends from Lake Baikal toward Northeast China, and there is a northerly wind upstream of the northern mountain complex (located near the Korean-Chinese border). On the other hand, for ON type, the ridge of Siberian high extends southeastward from Lake Baikal, and there is a westerly wind upstream of the northern mountain complex. The pressure pattern of AP type was similar to the OP type and that of AN type was also similar to ON type. Thus it was difficult to differentiate AP type and OP type and AN type and ON type based on the synoptic pressure pattern only. The four types were determined by U (wind speed normal to the Taebaek mountains) and Froude number (FN). That is, for OP type, average FN and U at Yeongdong coast are ~2.0 and ${\sim}6m\;s^{-1}$, and those at Yeongseo region are 0.0 and $0.1m\;s^{-1}$, respectively. On the contrary, for ON type, average FN and U at Yeongdong coast are 0.0 and $0.2m\;s^{-1}$, and those at Yeongseo region are ~1.0 and ${\sim}4m\;s^{-1}$, respectively. For AP type, average FN and U at Yeongdong coast are ~1.0 and ${\sim}4m\;s^{-1}$, and those at Yeongseo region are 0.0 and $0.2m\;s^{-1}$, whereas for AN type, average FN and U at Yeongdong coast are 0.1 and $0.6m\;s^{-1}$ and those at Yeongseo region are ~1.0 and ${\sim}3m\;s^{-1}$, respectively. Based on the result, a schematic diagram for each type was suggested.

Analysis of the Controlling Factors of an Urban-type Landslide at Hwangryeong Mountain Based on Tree Growth Patterns and Geomorphology (부산 황령산에서의 수목 성장 및 지형 특성을 이용한 도시 산사태의 발생원인 분석)

  • Choi, Jin-Hyuck;Kim, Hyun-Tae;Oh, Jae-Yong;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.281-293
    • /
    • 2011
  • We investigated the causes and characteristics of a landslide at Hwangryeong Mountain, Busan, based on aerial photos, annual precipitation data, rock fracture patterns, and geomorphic features using GIS Software, and a statistical analysis of tilted trees. The analyzed slope shows evidence of a previous slope failure event and the possibility of future failures. Although the NW-SE trending slope was relatively stable until 1975, a large-scale slope failure occurred between 1975 and 1985 due to complex factors, including favorably oriented geologic structures, human activity, and heavy rain. This indicates that a detailed study of geologic structures, slope stability, and rainfall characteristics is important for slope cuttings that could be a major factor and cause of urban landsliding events. The statistic analysis of tilted trees shows a slow progressive creeping type of mass wasting with rock falls oblique to the dip of the slope, with the slope having moved towards the west since 1985. A concentration of tree tilting has developed on the northwestern part of the slope, which could reach critical levels in the future. The analysis of deformed trees is a useful tool for understanding landslides and for predicting and preventing future landslide events.

Analysis of Characteristics of Landslide Susceptibility in Rugged Mountain Range in the Korean National Park (산악형 국립공원지역의 산사태 발생과 취약지역 특성 분석)

  • Lee, Sung-Jae;Lee, Eun-Jai;Ma, Ho-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.552-561
    • /
    • 2019
  • In korea, debris-flow disasters are induced by typhoon and localized torrential rainfall annually. These disasters are particularly severe in the Korean national park due to its geomorphological characteristics. This study was conducted to analyze the landslide characteristics and forest environmental factors of landslide areas located in rugged mountain range in the Korean national park (Mt. Seorak, Mt. Jiri, and Mt. Sobaek). Overall, landslides occurred at 474 sites. The average area of the landslide scar among these sites was 1,212 ㎡. The average landslide sediment was 1,389 ㎥, average landslide length was 75 m, and the average width was 12.9 m. The landslides frequently occurred in regions with igneous rock and coniferous forest. In addition, slope gradient degree (31°-40°), slope gradient direction (N), vertical slope (concave), cross slope (concave), altitude (401-800 m), position (middle), stream order (first order), forest type (mixed), parent rock (igneous), and soil depth (<46 cm). The relationship between landslide soil volume and environmental factors showed positive correlation. The variables of vertical slope (complex), altitude (<1,201 m), and soil depth (<46 cm) correlated significantly at 1 % level.

Vascular plant diversity of Gwangdeoksan Mountain (Cheonan-Asan, Korea): insights into ecological and conservation importance (광덕산(천안·아산시) 관속식물상의 다양성: 생태학적, 보존학적 중요성)

  • JEON, Ji-Hyeon;CHO, Myong-Suk;YUN, Seon A;GIL, Hee-Young;KIM, Seon-Hee;KWON, Youl;SEO, Hee-Seung;SHUKHERTEI, Ariun;KIM, Seung-Chul
    • Korean Journal of Plant Taxonomy
    • /
    • v.51 no.1
    • /
    • pp.49-99
    • /
    • 2021
  • Gwangdeoksan Mountain (699.3 m) is the highest border mountain between the two cities of Chungcheongnamdo Province, Cheonan and Asan, Korea. In this study, we investigated the flora of Gwangdeoksan Mt. from April of 2015 to October of 2017. Through 20 independent field investigations, we identified and tallied a total of 428 species, 9 subspecies, 30 varieties, and a forma in 287 genera and 97 families. Of a total of 468 taxa, 128 taxa in 112 genera and 58 families were found to be Korean endemic species (7 taxa), floristic regional indicator species (45 taxa), rare or endangered species (3 taxa), species subject to the approval of outbound transfer (73 taxa), and alien or ecosystem disturbing species (32 taxa). The flora of Gwangdeoksan Mt. can be divided into four distinct floristic subregions, with higher diversity in the north-facing subregion. The complex flora of Gwangdeoksan Mt., emerging at the edge of two floristic regions of the Korean peninsula, may represent a significant conservation priority and a topic for future ecological and geographical studies.

A Study on the Sunshine Environment Around Urban Redevelopment Area Using a GIS Data (GIS 자료를 활용한 도시 재개발 주변 지역의 일조 환경 분석)

  • Kang, Jung-Eun;Park, Soo-Jin;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.749-762
    • /
    • 2018
  • In this study, the changes of the sunshine environment due to the construction of buildings were analyzed by season. Using a geographic information system (GIS) data, the topography and the buildings were constructed around Pukyong National University (PKNU) in Busan. The numerical model was performed for a week in each season, before and after the construction of buildings. Even before the construction of the high-rise building complex, the area of sunshine block is wide due to the apartment complex located in the southeast of the PKNU campus and the mountain in the south. After the construction, the sunshine-blocked area became wider after the sunrise and before the sunset. The area of sunshine block after 1 hour at sunrise increased by 1.60%, 1.50%, 1.58% and 1.36% in the vernal equinox, summer solstice, autumnal equinox and winter solstice, respectively. The building complex in the east (south) of the PKNU campus made shadow in more than 1,000 m (750 m) toward the west (east) just before the sunrise (sunset). Especially, the sunshine duration in PKNU campus decreased by 46.61%, 22.75%, 58.56%, and 11.31% in the vernal equinox, summer solstice, autumnal equinox and winter solstice, respectively. The analysis of the sunshine duration for a dormitory building showed that the construction of the building complex in the south of the PKNU campus reduced the sunshine area of the western (southern) wall of the dormitory by 30.91% (49.45%) for a winter week.

Daesoon Jinrihoe Yeoju Headquarters Temple Complex as Viewed within Feng-Shui Theory (풍수지리로 본 대순진리회 여주본부도장)

  • Shin, Young-dae
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.33
    • /
    • pp.91-145
    • /
    • 2019
  • This study aims to reveal that Daesoon Jinrihoe Yeoju Headquarters Temple Complex is a sacred place of Gaebyeokgongsa (the Reordering Works of the Great Opening) through the logic of the energy of form in Feng-Shui studies. The Headquarters Temple Complex can illuminate the lamp of coexistence, emerge as a place for cultivation, and support the era of human nobility with Gucheonsangje (the Supreme God of the Ninth Heaven) as an object of faith. Virtuous Concordance of Yin and Yang, Harmonious Union between Divine Beings and Human Beings, the Resolution of Grievances for Mutual Beneficence, and Perfected Unification with Dao are the mission statements of this great site. For this purpose, it is necessary to investigate the headquarters according to integral Feng-Shui Theory. Doing so can provide proof that the geographic location, landscape, yin-yang harmonizing, and flowing veins of terrestrial energy at Headquarters Temple Complex are all profoundly auspicious. At the same time, this data also allows further study into the interactions of dragon-veins, energy hubs, surrounding mountains, and watercourses, which reveal how Daesoon Jinrihoe Yeoju Headquarters Temple Complex promotes the basic works of propagation, edification, and cultivation and three societal works of charity aid, social welfare, and education for the purpose of global propagation, saving beings, and building an earthly paradise by reforming humanity and engaging in spiritual civilization. This must be done on site with proper Feng-Shui in order to open up the era of human nobility upon the Great Opening of the Later World. As the center of the religious order, Daesoon Jinrihoe, Yeoju Headquarter Temple Complex has the general Feng-Shui characteristic of Baesanimsu (a back supported by a mountain and a front facing water). Through discussing the Feng-Shui of Daesoon Jinrihoe's Yeoju Headquarters Temple Complex as the center of humankind's resolution of grievances for mutual beneficence, this study would explore growth-supporting land that delivers future rewards through Feng-Shui symbolism and the ethical practice of grateful reciprocation of favors for mutual beneficence. This exploration will reveal how the geographical features and conditions of the Yeoju Headquarters Temple Complex make it a place fit for spiritual cultivation. It is a miraculous luminous court surrounded by mountains, where auspicious signs in eight directions gather. Its veins of terrestrial energy harmonize with clean water energy as it is affectionately situated within its natural environment. Its location corresponds with the Feng-Shui theory of dragon-veins, energy hubs, surrounding mountains, and watercourses. Thus, with regards to the Feng-Shui of Daesoon Jinrihoe's Yeoju Headquarters Temple Complex, this study examines the flows of mountains and waters and focuses on how the site is based on the logic of Feng-Shui. More generally, the geographical features of the surrounding mountains are likewise examined. An analysis of the relationship between Poguk (布局) of Sasinsa (animal symbols of the four directions, four gods, including blue dragon of the east, red phoenix of the south, white tiger of the west, and black tortoise of the north) and the location will be provided while focusing on the Yeoju Headquarters Temple Complex. This study supports the feasibility of further Feng-Shui studies of the Yeoju Headquarters Temple Complex based on traditional geomancy books that focusing on Hyeonggi (Energy of Form) Theory.