• Title/Summary/Keyword: motor evoked potential

Search Result 47, Processing Time 0.023 seconds

Functional-Magnetic Resonance Imaging and Transcranial Magnetic Stimulation in a Case of Schizencephaly (뇌열 1예의 기능적 자기공명영상과 경두부 자기자극)

  • 변우목;한봉수;이재교;장용민
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.14-19
    • /
    • 2000
  • Purpose : This study was to present the functional brain mapping of both functional magnetic resonance imaging(MRI) and transcranial magnetic stimulation(TMS) in a case of schizencephaly. Materials and methods : A 28-year-old man, who had left hemiplegia and schizencephaly in right cerebral hemisphere, was exacted with both functional MRI and TMS. Motor function of left hand was decreased whereas right hand was within normal limit. For functional MRI, gradient-echo echo planar imaging($TR/TE/{\alpha}$=1.2 sec/90 msec/90) was employed. The paradigm of motor task consisted of repetitive self-paseo hand flexion-extension exercises with 1-2 Hz periods. An image set of 10 slices was repetitively acquired with 15 seconds alternating periods of task performance and rest and total 6 cycles (three ON periods and three OFF periods) were performed. In brain mapping, TMS was performed with the round magnetic stimulator (mean diameter; 90mm). The magnetic stimulation was done with 80% of maximal output. The latency and amplitude of motor evoked potential(MEP)s were obtained from both abductor pollicis brevis(APB) muscles. Results : Functional MRI revealed activation of the left primary motor cortex with flexion-extension exercises of healthy right hand. On the other hand, the left primary motor cortex, left supplementary motor cortex, and left promoter areas were activated with flexion-extension exercises of left hand. In TMS, magnetic evoked potentials were induced in no areas of right cerebral hemisphere, but in 5 areas of left corebral hemisphere from both abductor pollicis brevis. Latency, amplitude, and contour of response of the magnetic evoked potentials in both hands were similar. Conclusion : Functional MRI and TMS in a patient with schizencephaly were successfully used to localize cortical motor function. Ipsilateral motor pathway is thought to be secondary to reinforcement of the corticospinal tract of the ipsilateral motor cortex.

  • PDF

Changes of Somatosensory Evoked Potential and Functional Recovery in Patients of Cerebrovascular disease (뇌혈관 질환자의 기능 회복과 체성감각 유발전위의 변화)

  • Kim, Yoon-Hwan;Kim, Chan-Kyu;Park, Jong-Hang;Lee, Seung-Yub;Choi, Won-Jye
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.1
    • /
    • pp.11-20
    • /
    • 2008
  • This study was designed to test the effects of comprehensive rehabilitation management on functional recovery after attack of cerebrovascular disease. 16 cerebrovascular disease patients applied comprehensive rehabilitation management of physical therapy at department of physical Therapy, C medical center in Gwang-ju. The collection of the data had been executed for 4months(April 15, 2007${\sim}$July 15, 2007). For evaluating, Functional Independence measure(FIM) and Somatosensory Evoked Potential(SSEP) were used to assess functional recovery. The results of this study were as follows: 1. In the comparison of latency of median nerve SSEP before and after treatment, the lat. N20 and P25 increased, the ampl. P25/N20 was decreased. In the comparison difference data of median nerve SSEP, however there was no significant difference in the group(p>0.05). 2. In the comparison of latency of Post Tibial nerve SSEP before and after treatment, the lat. P40, P50, P60 increased, the ampl. P40 was decreased. In the comparison difference data of post tibial nerve SSEP, however there was no significant difference in the group(p>0.05). 3. In the comparison of FIM scores of Self-care, Sphincter Control, Mobility: Transfer, Locomotion before and after treatment, the scores of FIM was significantly increased. In the comparison of difference of the motor part of FIM, however there was significant difference(p<0.05). 4. In the comparison of FIM scores of Communication, Social Cognition before and after treatment, the scores of FIM was significantly increased. In the comparison of difference of the motor part of FIM, however there was no significant difference in the group(p>0.05). Based on these results, it is concluded that the comprehensive rehabilitation management for cerebrovascular disease case was not significant difference in the SSEP, was significant difference in the motor part of FIM. Further study should be done to analyze the effect of intervention duration of treatment, optimal time to apply the treatment in more long period.

  • PDF

Facial Motor Evoked Potential Techniques and Functional Prediction during Cerebello-pontine Angle Surgery (소뇌교각 수술 중에 안면운동유발전위의 검사방법과 기능적 예측인자)

  • Baek, Jae-Seung;Park, Sang-Ku;Kim, Dong-Jun;Park, Chan-Woo;Lim, Sung-Hyuk;Lee, Jang Ho;Cho, Young-Kuk
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.470-476
    • /
    • 2018
  • Facial motor evoked potential (FMEP) by multi-pulse transcranial electrical stimulation (mpTES) can complement free-running electromyography (EMG) and direct facial nerve stimulation to predict the functional integrity of the facial nerve during cerebello-pontine angle (CPA) tumor surgery. The purpose of this paper is to examine the standardized test methods and the usefulness of FMEP as a predictor of facial nerve function and to minimize the incidence of facial paralysis as an aftereffect of surgery. TES was delivered through electrode Mz (cathode) - M3/M4 (anode), and extracranially direct distal facial muscle excitation was excluded by the absence of single pulse response (SPR) and by longer onset latency (more than 10 ms). FMEP from the orbicularis oris (o.oris) and the mentalis muscle simultaneously can improve the accuracy and success rate compared with FMEP from the o.oris alone. Using the methods described, we can effectively predict facial nerve outcomes immediately after surgery with a reduction of more than 50% of FMEP amplitude as a warning criterion. In conclusion, along with free-running EMG and direct facial nerve stimulation, FMEP is a useful method to reduce the incidence of facial paralysis as a sequela during CPA tumor surgery.

Evoked Potentials before the Intractable Epilepsy Surgery (난치성 뇌전증 환자에서 수술 전 유발전위검사)

  • Lim, Sung Hyuk;Park, Sang Ku;Baek, Jae Seung;Kim, Kab Kyu;Kim, Ki Eob;Lee, Yu Ji
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.198-204
    • /
    • 2019
  • Various treatments can be attempted in patients with intractable epilepsy, in whom the symptoms of seizures are not controlled by various drugs. On the other hand, in patients requiring a surgical method, a preoperative examination is needed to determine the portion of seizure site to be resected. Electrodes are inserted into the cerebral cortex for accurate lesion measurements and safe operation. The electrodes inserted in the cortex not only record the electroencephalography (EEG), but also allow various tests to confirm the function of the part. One of these methods is the evoked potential test. From January 2015 to December 2018, the trends of measured waveforms in were analyzed 70 patients. The somatosensory evoked potential (SSEP) recorded on the electrode inserted in the cerebral cortex can be searched for the pathway of the central sulcus to avoid the primary motor area and primary sensory area. In addition, using the middle latency auditory evoked potentials (MLAEP) and flash visual evoked potentials (FVEP), the functional cortex in the auditory cortex and the visual cortex were compared with the seizure focus point on the EEG to help determine the location of the ablation and minimize functional impairment after surgery.

Intraoperative Neurophysiological Monitoring during Microvascular Decompression Surgery for Hemifacial Spasm

  • Park, Sang-Ku;Joo, Byung-Euk;Park, Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.367-375
    • /
    • 2019
  • Hemifacial spasm (HFS) is due to the vascular compression of the facial nerve at its root exit zone (REZ). Microvascular decompression (MVD) of the facial nerve near the REZ is an effective treatment for HFS. In MVD for HFS, intraoperative neurophysiological monitoring (INM) has two purposes. The first purpose is to prevent injury to neural structures such as the vestibulocochlear nerve and facial nerve during MVD surgery, which is possible through INM of brainstem auditory evoked potential and facial nerve electromyography (EMG). The second purpose is the unique feature of MVD for HFS, which is to assess and optimize the effectiveness of the vascular decompression. The purpose is achieved mainly through monitoring of abnormal facial nerve EMG that is called as lateral spread response (LSR) and is also partially possible through Z-L response, facial F-wave, and facial motor evoked potentials. Based on the information regarding INM mentioned above, MVD for HFS can be considered as a more safe and effective treatment.

Intraoperative Neurophysiology Monitoring for Spinal Dysraphism

  • Kim, Keewon
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.2
    • /
    • pp.143-150
    • /
    • 2021
  • Spinal dysraphism often causes neurological impairment from direct involvement of lesions or from cord tethering. The conus medullaris and lumbosacral roots are most vulnerable. Surgical intervention such as untethering surgery is indicated to minimize or prevent further neurological deficits. Because untethering surgery itself imposes risk of neural injury, intraoperative neurophysiological monitoring (IONM) is indicated to help surgeons to be guided during surgery and to improve functional outcome. Monitoring of electromyography (EMG), motor evoked potential, and bulbocavernosus reflex (BCR) is essential modalities in IONM for untethering. Sensory evoked potential can be also employed to further interpretation. In specific, free-running EMG and triggered EMG is of most utility to identify lumbosacral roots within the field of surgery and filum terminale or non-functioning cord can be also confirmed by absence of responses at higher intensity of stimulation. The sacral nervous system should be vigilantly monitored as pathophysiology of tethered cord syndrome affects the sacral function most and earliest. BCR monitoring can be readily applicable for sacral monitoring and has been shown to be useful for prediction of postoperative sacral dysfunction. Further research is guaranteed because current IONM methodology in spinal dysraphism is still deficient of quantitative and objective evaluation and fails to directly measure the sacral autonomic nervous system.

The Effects of Sera from Amyotrophic Lateral Sclerosis Patients on Neuromuscular Transmission and Calcium Channels in Mice

  • Yan, Hai-Dun;Kim, Ji-Mok;Jung, Sung-Jun;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.101-117
    • /
    • 1999
  • Amyotrophic lateral sclerosis (ALS) is a degenerative neuromuscular disease of unknown etiology in which the upper and lower motor neurons are progressively destroyed. Recent evidences support the role of autoimmune mechanisms in the pathogenesis of ALS. This study investigated the effects of sera from ALS patients on neuromuscular transmission in phrenic nerve-hemidiaphragm preparations and on calcium currents of single isolated dorsal root ganglion (DRG) cells in mice. Mice were injected with either control sera from healthy adults or ALS sera from 18 patients with ALS of sporadic form, for three days. Miniature end plate potential (MEPP) and nerve-evoked end plate potential (EPP) were measured using intracellular recording technique and the quantal content was determined. Single isolated DRG cells were voltage-clamped with the whole-cell configuration and membrane currents were recorded. Sera from 14 of 18 ALS patients caused a significant increase in MEPP frequency in normal Ringer's solution $(4.62{\pm}0.14\;Hz)$ compared with the control $(2.18{\pm}0.15\;Hz).$ In a high $Mg^{2+}/low\;Ca^{2+}$ solution, sera from 13 of 18 ALS patients caused a significant increase in MEPP frequency, from $2.18{\pm}0.31$ Hz to $6.09{\pm}0.38$ Hz. Sera from 11 of 18 patients produced a significant increase of nerve-evoked EPP amplitude, from $0.92{\pm}0.05$ mV to $1.30{\pm}0.04$ mV, while the other seven ALS sera did not alter EPP amplitude. In the ALS group, EPP quantal content was also elevated by the sera of 14 patients (from $1.49{\pm}0.07$ to $2.35{\pm}0.07).$ MEPP frequency and amplitude in wobbler mouse were $4.03{\pm}0.53$ Hz and $1.37{\pm}0.18$ mV, respectively, which were significantly higher than those of wobbler controls (wobblers without the symptoms of wobbler). Sera from ALS patients significantly reduced HVA calcium currents of DRG cells to 42.7% at -10 mV. Furthermore, the inactivation curve shifted to more negative potentials with its half-inactivation potential changed by 6.98 mV. There were, however, significant changes neither in the reversal potential of $I_{Ca}$ nor in the I-V curve. From these results it was concluded that: 1) The serum factors of sporadic ALS patients increase neuromuscular transmission and can alter motor nerve terminal presynaptic function. This suggests that ALS serum factors may play an important role in the early stage of ALS, and 2) Calcium currents in DRG cells were reduced and rapidly inactivated by ALS sera, suggesting that in these cells, ALS serum factors may exert interaction with the calcium channel.

  • PDF

The Effect of 2Hz vs. 120Hz Frequency Electrical Acupoint Stimulation on Motor Recovery after Stroke by Motor Evoked Potential Study (뇌경색(腦硬塞) 환자(患者)의 운동장애(運動障碍)에 대(對)한 2Hz와 120Hz 전침(電鍼) 치료(治療)의 효과(效果) 비교(比較) : 운동유발전위검사를 통한 비교)

  • Hong, Jin-Woo;Choi, Chang-Min;Park, Young-Min;Shin, Won-Jun;Jeong, Dong-Won;Park, Seong-Uk;Jung, Woo-Sang;Park, Jung-Mi;Moon, Sang-Kwan;Go, Chang-Nam;Cho, Ki-Ho;Bae, Hyung-Sup;Kim, Young-Suk
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.265-275
    • /
    • 2006
  • Objectives : Electrical acupoint stimulation(EAS) has been used to treat motor dysfunction of stroke patients with reportedly effective results. The purpose of this study is to evaluate the efficacy of the EAS with different frequencies in treating motor dysfunction of ischemic stroke patients. Methods : The subject of this study were forty-two ischemic stroke patients with motor dysfunction in Kyunghee oriental medicine hospital who were hospitalized for one week to one month from onset. They were treated with 2Hz or 120Hz EAS for two weeks, and motor evoked potentials(MEP) were measured before and after EAS treatment. To compare the effect of 2Hz EAS with 120Hz, the number of patients who showed MEP responses after two weeks among those who had no previous response was checked. Also measured were latency, central motor conduction time(CMCT), amplitude of MEP before and after EAS treatment. Results : After two weeks of treatment, 4 out of 15 patients(27%) in the 2Hz EAS group and lout of 19 patients(5%) in the 120Hz group showed potential responses. Yet there was no significant difference between the two groups. When MEP data of the affected side between the 2Hz group and the 120Hz group was compared, the former showed more significant improvement than the latter in latency, CMCT and amplitude(P=0.040, 0.019,0.021). When the proportion of the affected side and unaffected side in MEP data was examined, the 2Hz group showed improvement on only latency and CMCT with significant differences(P=0.040, 0.014). Conclusions : These results show that EAS with low frequency is more helpful for motor recovery after ischemic stroke than that with high frequency. This suggests that low frequency EAS activates the central motor conduction system better than high frequency EAS.

  • PDF

Steady-State Visual Evoked Potential (SSVEP)-based Rehabilitation Training System with Functional Electrical Stimulation (안정상태 시각유발전위 기반의 기능적 전기자극 재활훈련 시스템)

  • Sohn, R.H.;Son, J.;Hwang, H.J.;Im, C.H.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.359-364
    • /
    • 2010
  • The purpose of the brain-computer (machine) interface (BCI or BMI) is to provide a method for people with damaged sensory and motor functions to use their brain to control artificial devices and restore lost ability via the devices. Functional electrical stimulation (FES) is a method of applying low level electrical currents to the body to restore or to improve motor function. The purpose of this study was to develop a SSVEP-based BCI rehabilitation training system with FES for spinal cord injured individuals. Six electrodes were attached on the subjects' scalp ($PO_Z$, $PO_3$, $PO_4$, $O_z$, $O_1$ and $O_2$) according to the extended international 10-20 system, and reference electrodes placed at A1 and A2. EEG signals were recorded at the sampling rate of 256Hz with 10-bit resolution using a BIOPAC system. Fast Fourier transform(FFT) based spectrum estimation method was applied to control the rehabilitation system. FES control signals were digitized and transferred from PC to the microcontroller using Bluetooth communication. This study showed that a rehabilitation training system based on BCI technique could make successfully muscle movements, inducing electrical stimulation of forearm muscles in healthy volunteers.

Practical Use Technology for Robot Control in BCI Environment based on Motor Imagery-P300 (동작 상상-P300 기반 BCI 환경에서의 로봇 제어 실용화 기술)

  • Kim, Yong-Honn;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.227-232
    • /
    • 2013
  • BCI (Brain Computer Interface) is technology to control external devices by measuring the brain activity, such as electroencephalogram (EEG), so that handicapped people communicate with environment physically using the technology. Among them, EEG is widely used in various fields, especially robot agent control by using several signal response characteristics, such as P300, SSVEP (Steady-State Visually Evoked Potential) and motor imagery. However, in order to control the robot agent without any constraint and precisely, it should take advantage of not only a signal response characteristic, but also combination. In this paper, we try to use the fusion of motor imagery and P300 from EEG for practical use of robot control in BCI environment. The results of experiments are confirmed that the recognition rate decreases compared with the case of using one kind of features, whereas it is able to classify each both characteristics and the practical use technology based on mobile robot and wireless BCI measurement system is implemented.