• Title/Summary/Keyword: motor design

Search Result 4,317, Processing Time 0.035 seconds

Accuracy Simulation Technology for Machine Control Systems (기계장비 제어특성 시뮬레이션 플랫폼 기술)

  • Song, Chang-Kyu;Kim, Byung-Sub;Ro, Seung-Kook;Lee, Sung-Cheul;Min, Byung-Kwon;Jeong, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.292-300
    • /
    • 2011
  • Control systems in machinery equipment provide correction signals to motion units in order to reduce or cancel out the mismatches between sensor feedback signals and command or desired values. In this paper, we introduce a simulator for control characteristics of machinery equipment. The purpose of the simulator development is to provide mechanical system designers with the ability to estimate how much dynamic performance can be achieved from their design parameters and selected devices at the designing phase. The simulator has a database for commercial parts, so that the designers can choose appropriate components for servo controllers, motors, motor drives, and guide ways, etc. and then tune governing parameters such as controller gains and friction coefficients. The simulator simulates the closed-loop control system which is built and parameter-tuned by the designer and shows dynamic responses of the control system. The simulator treats the moving table as a 6 degrees-of-freedom rigid body and considers the motion guide blocks stiffness, damping and their locations as well as sensor locations. The simulator has been under development for one and a half years and has a few years to go before the public release. The primary achievements and features will be presented in this paper.

Accuracy Simulation of Precision Rotary Motion Systems (회전운동 시스템의 정밀도 시뮬레이션 기술)

  • Hwang, Joo-Ho;Shim, Jong-Youp;Hong, Seong-Wook;Lee, Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.285-291
    • /
    • 2011
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. The error motions of the spindle are not desired errors in the three linear direction motions and two rotating motions. Those are usually due to the imperfect of bearings, stiffness of spindle, assembly errors, external force or unbalance of rotors. The error motions of the spindle have been needed to be decreased to desired goal of spindle's performance. The level of error motion is needed to be estimated during the design and assembly process of the spindle. In this paper, the estimation method for the five degree of freedom (5 D.O.F) error motions of the spindle is suggested. To estimate the error motions of the spindle, waviness of shaft and bearings, external force model was used as input data. And, the estimation models are considering geometric relationship and force equilibrium of the five degree of the freedom. To calculate error motions of the spindle, not only imperfection of the shaft, bearings, such as rolling element bearing, hydrostatic bearing, and aerostatic bearing, but also driving elements such as worm, pulley, and direct driving motor systems, were considered.

The Study on Low-cost Position Sensor Using Index and Increment PWM (인덱스 및 증분형 PWM 타입을 이용한 저가형 위치센서에 관한 연구)

  • Kim, Young-Su;Kwon, Soon-Jae
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.27-33
    • /
    • 2016
  • BLDC motors have the strong point of allowing high-efficiency operation, yet with the weak point of requiring position information for operation. Moreover, there have recently been frequent cases where the product differentiation of even a cheap BLDC motor demanded a high level of control performance similar to that of a controller using a high-precision position sensor. This paper proposes low cost position sensor that enables the acquisition of rotor position information based on index and incremental PWM, using a single position sensor instead of an expensive incremental encoder or a cheap 3 phase hall sensor. The characteristic of the proposed encoder is that index information at every $60^{\circ}$ of electrical angle is inscribed on the encoder disk, as well as a multiple number of values representing information about PWM, which is obtained by modulating information about the electrical angle of the rotor that has the resolution of $60^{\circ}$. Such a method has the characteristic of enabling the acquisition of high-precision position information based on the information about a multiple number of PWM waveforms and counter values that have all been inscribed on the encoder disk for each $60^{\circ}$ range. The feasibility of the proposed new encoder was verified by fabricating a prototype encoder generating 240 pulses, followed by confirming its performance using Micom's capture and software counter functions.

Development of Autonomous Mobile Robot with Speech Teaching Command Recognition System Based on Hidden Markov Model (HMM을 기반으로 한 자율이동로봇의 음성명령 인식시스템의 개발)

  • Cho, Hyeon-Soo;Park, Min-Gyu;Lee, Hyun-Jeong;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.726-734
    • /
    • 2007
  • Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.

Design of a 50kW Class Rotating Body Type Highly Efficient Wave Energy Converter (50kW급 가동물체형 고효율 파력발전시스템 설계)

  • Cho, Byung-Hak;Yang, Dong-Soon;Park, Shin-Yeol;Choi, Kyung-Shik;Park, Byung-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.552-558
    • /
    • 2011
  • A 50 kW class rotating body type wave energy converter consisted of two floating bodies and a PTO (Power Takeoff) unit is studied. As an wave energy extractor, the body is designed to have a VLCO (Variable Liquid-Column Oscillator) having a liquid filled U-tube with air chambers. Owing to the oscillation of the liquid in the U-tube caused by the air spring effect of the air chambers, the amplitude of response of the VLCO becomes significantly amplified for a target wave period. The PTO converts the rotational moment introduced from the relative motion of the hinged bodies to an hydraulic power by means of a cylinder. A high pressure accumulator, hydraulic motor and a generator are equipped in the PTO to convert the hydraulic power to electric power. A control law for adjusting the oscillation period of the VLCO is proposed for the efficient operation of the VLCO with various wave conditions. It is found that the effect of the air spring has an important role to play in making the oscillation of the VLCO match with the ocean wave. In this way, the wave energy converter equipped with the VLCO provides the most effective mode for extracting energy from the ocean wave.

A Study on Dynamic Characteristic Analysis for the Industrial Monorail Vehicle (산업용 단선 궤도 차량의 주행 동특성에 관한 연구)

  • Lee Soo-Ho;Jung Il-Ho;Lee Hyung;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1005-1012
    • /
    • 2005
  • An OHT(Over Head Transportation) vehicle is an example of the industrial monorail vehicle, and it is used in the automobile, semiconductor, LCD manufacturing industries. OHT vehicle is moved by main wheels and guide rollers. The major function of the main wheel is to support and drive the OHT vehicle. The roles of the guide roller is the inhibition of derailment and steering of the OHT vehicle. Since the required vehicle velocity becomes faster and the required load capacity is increased, the durability characteristics of the wheel and roller, which was made of urethane, need to be increased. So it is necessary to estimate the fatigue life cycle of the wheel and roller. In this study, OHT dynamic model was developed by using the multi body dynamic analysis program ADAMS. Wheel and roller are modeled by the 3-D surface contact module. Especially, motor cycle tire mechanics is used in the wheel contact model. The OHT dynamic model can analyze the dynamic characteristic of the OHT vehicle with various driving conditions. And the result was verified by a vehicle traveling test. As a result of this study, the developed model is expected to predict wheel dynamic load time history and makes a contribution to design of a new monorail vehicle.

Development of a trench shield machine for the near-surface railway construction (저심도 철도 건설을 위한 트렌치 쉴드 장비 개발연구)

  • Lee, So-Oh;Sagong, Myung;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.175-187
    • /
    • 2015
  • In this paper, the development of trench shield machine for near-surface railway construction were presented. The Near-surface railway can be constructed by cut and cover construction method, because it is installed at the depth of 5~7 m below roads. The cut and cover construction method mostly use temporary supports. The limitation of the cut and cover method is high installation cost and long construction period. To overcome these disadvantages, development of the trench shield machine is proposed and expected to shorten the construction time and cost of near-surface railway system. The sliding retaining wall of trench shield equipment replaces the role of temporary support (solider piles and lagging) and excavator equiped to the bottom front of the machine shorten the excavation time. This paper deals with design of the bit attached to the excavator and required capacity of the motor.

Quality of Life in Colorectal Cancer Patients with Chemotherapy-Induced Peripheral Neuropathy (항암화학요법으로 인한 말초신경병증을 경험하는 대장암 환자의 삶의 질)

  • Kim, Jeong-Hye;Choi, Kyung-Sook;Kim, Tae-Won;Hong, Yong-Sang
    • Asian Oncology Nursing
    • /
    • v.11 no.3
    • /
    • pp.254-262
    • /
    • 2011
  • Purpose: The purpose of this study was to identify the quality of life in colorectal cancer patients with chemotherapy-induced peripheral neuropathy. Methods: A total of 93 patients were recruited in the cross-sectional survey design. Quality of life in colorectal cancer patients were measured by European Organization for Research and Treatment of Cancer (EORTC) QLQ C30 and CIPN20. Results: In the QLQ C30, the mean score of the global health status was 59.41, the functional scale was 73.29 and symptom scale was 26.72. In CIPN20, the mean score of sensory scale was 32.70, autonomic scale was 22.88 and motor scale was 16.12. In the QLQ C30, the global health status showed significant differences according to surgery (p=.027) and the functional scale, and the symptom scale showed significant differences according to gender (p=.046, p=.020) and nonpharmacologic intervention (p=.001, p=.009). The CIPN20, the sensory scale showed significant differences according to age (p=.006), DM (p=.005), grade of CIPN (p=<.001) the status of chemotherapy (p=.001) and nonpharmacologic intervention (p=.010). Conclusion: The level of quality of life in colorectal cancer patients with peripheral neuropathy was relatively low. There is a need for developing a nursing intervention for colorectal cancer patients to improve their quality of life and to decrease chemotherapy-induced peripheral neuropathy.

Experimental contribution analysis of external aeroacoustic noise sources to interior noise of automobile (자동차 외부 공기음향 소음원들의 실험적 실내 기여도 분석 기술 개발)

  • Lee, Myung Han;Ih, Kang Duck;Hwang, Seongil;Kim, Yong-Joe
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.300-308
    • /
    • 2018
  • The contribution analysis of various external aeroacoustic noise sources to interior noise is important, enabling to design an automobile with a low interior noise level. With a new technique, the CD (Cholesky Decomposition), it is proposed to decompose an overall interior noise spectrum into multiple spectra, each representing the contribution of a specific noise source to the interior noise. In order to validate this method, three kinds of experiments were conducted. Furthermore, it is proposed to improve the CD-based contribution analysis method to be integrated with existing exterior microphone arrays in the wind tunnel. This method was validated with an experiment with two speakers.

Modeling and Simulation of Secondary Battery-Fuel Cell Propulsion System for Underwater Vessel to Estimate the Operation Time (수중함용 2차전지-연료전지 추진체계의 성능 예측을 위한 M&S 연구)

  • Ji, Hyunjin;Cho, Sungbaek;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.694-702
    • /
    • 2014
  • One of the most important devices in an underwater vessel is a propulsion system. It should be a quiet and efficient system for stealthy operations in the large mission area. Hence lead-acid battery system has been used to supply the energy to electric motor. Recent technological developments and improvements, such as polymer electrolyte membrane(PEM) fuel cell and lithium polymer battery and have created the potential to improve overall power and propulsion performance. An underwater vessel always starts their mission with a limited energy and is not easy to refuel. Therefore design of energy elements, such as fuel cell and battery, and their load distribution are important to increase the maximum operating time of underwater vessel. In this paper, the lead-acid battery/PEM fuel cell and lithium polymer battery/PEM fuel cell were suggested as propulsion system and their performances were analyzed by modeling and simulation using Matlab/Simulink. Each model concentrated on representing the characteristics of energy element depending on demand current. As a result the effect of load distribution between battery and fuel cell was evaluated and the operation time of each propulsion system was able to be estimated exactly.