• Title/Summary/Keyword: motion stage

Search Result 690, Processing Time 0.031 seconds

The Analysis of Motion Error in Scanning Type XY Stage (스캐닝 방식 XY 스테이지의 운동오차 분석)

  • 황주호;박천홍;이찬홍;김동익;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1380-1383
    • /
    • 2004
  • The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.

  • PDF

Two-stage variable block-size multiresolution motion estiation in the wavelet transform domain (웨이브렛 변환영역에서의 2단계 가변 블록 다해상도 움직임 추정)

  • 김성만;이규원;정학진;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1487-1504
    • /
    • 1997
  • In this paper, the two-stage variable block-size multiresolution motion algorithm is proposed for an interframe coding scheme in the wavelet decomposition. An optimal bit allocagion between motion vectors and the prediction error in sense of minimizing the total bit rate is obtained by the proposed algorithm. The proposed algorithm consists of two stages for motion estimatation and only the first stage can be separated and run on its own. The first stage of the algorithm introduces a new method to give the lower bit rate of the displaced frame difference as well as a smooth motion field. In the second stage of the algorithm, the technique is introduced to have more accurate motion vectors in detailed areas, and to decrease the number of motion vectors in uniform areas. The algorithm aims at minimizin gthe total bit rate which is sum of the motion vectors and the displaced frame difference. The optimal bit allocation between motion vectors and displaced frame difference is accomplished by reducing the number of motion vectors in uniform areas and it is based on a botom-up construction of a quadtree. An entropy criterion aims at the control of merge operation. Simulation resuls show that the algorithm lends itself to the wavelet based image sequence coding and outperforms the conventional scheme by up to the maximum 0.28 bpp.

  • PDF

Object-oriented coder using block-based motion vectors and residual image compensation (블러기반 움직임 벡터와 오차 영상 보상을 이용한 물체지향 부호화기)

  • 조대성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.96-108
    • /
    • 1996
  • In this paper, we propose an object-oriented coding method in low bit-rate channels using block-based motion vectors and residual image compensation. First, we use a 2-stage algorithm for estimating motion parameters. In the first stage, coarse motion parameters are estimated by fitting block-based motion vectors and in the second stage, the estimated motion parametes are refined by the gradient method using an image reconstructed by motion vectors detected in the first stage. Local error of a 6-parameter model is compensted by blockwise motion parameter correction using residual image. Finally, model failure (MF) region is reconstructed by a fractal mapping method. Computer simulation resutls show that the proposed method gives better performance than the conventional ones in terms of th epeak signal to noise ratio (PSNR) and compression ratio (CR).

  • PDF

Optimal Design of 3D Printer based Piezo-driven Vertical Micro-positioning Stage (3D 프린터 기반 수직형 마이크로 모션 스테이지의 최적설계)

  • Kim, Jung Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.78-85
    • /
    • 2017
  • This paper presents the development of a 3D printer based piezo-driven vertical micro-positioning stage. The stage consists of two flexure bridge structures which amplify and transfer the horizontal motion of the piezo-element into vertical motion of the end-effector. The stage is fabricated with ABS material using a precision 3D printer. This enables a one-body design eliminating the need for assembly, and significantly increases the freedom in design while shortening fabrication time. The design of the stage was optimized using response surface analysis method. Experimental results are presented which demonstrate 100nm stepping in the vertical out-of-plane direction. The results demonstrate the future possibilities of applying 3D printers and ABS material in fabricating linear driven motion stages.

Analysis on the motion characteristics of surface XY aerostatic stage (평면 XY 공기정압 스테이지의 운동특성 분석)

  • 황주호;박천홍;이찬홍;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.359-362
    • /
    • 2003
  • The aerostatic stage. which is used in semiconductor process, is demanded higher velocity and more precise accuracy for higher productivity and integrated performance. So, in the case of XY stage, H type structure, which is designed two co-linear axis of guide-way, driving force in one surface, has advantage of velocity and accuracy compared to conventional tacked type XY stage. To analyze characteristics of H type aerostatic stage, H type aerostatic surface XY stage is made, which is driven by linear motor and detected position with precise optical linear scale. And, analyze characteristics of motion error, effect of angular motion on positioning accuracy error and effect of simultaneous control on variation of velocity.

  • PDF

Analysis of application of motion graphics in the performing arts-Focuses on "Beyonce performs Run The World" (공면몌술메시 모션그래필의응용사계분석 -작품 "Beyonce performs Run The World")

  • Wang, Jia;Kim, Hae-Yoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.327-328
    • /
    • 2014
  • Modern life is surrounded by all kinds of information and screen, motion graphics in these media everywhere, you can use it to a special performance of the method, the use of the stage, so that the effect is more vivid stage performance. Stage design industry began to diversify the use of Motion graphic, have long been out of the framework of the traditional background, turn into dynamic video space. In this paper analysis of research papers by the dynamic changes in the graphics arena background, style, affect the application of dynamic images. Summed up in the stage of development that can adapt to the requirements of the times, better performance stage effects and express emotion of the stage performances.

  • PDF

Optimal Design for Parallelogram Type Flexure Hinge (Parallelogram형 Flexure Hinge 에 의한 Motion Stage 의 최적 설계)

  • Choi, Ju Yong;Eom, Sang In;Kim, Jung Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.107-111
    • /
    • 2015
  • This paper proposes an optimal design for a precision motion stage employing a parallelogram flexure hinge. The voltage applied to the piezo element produces motion that is amplified through a 3-stage amplification structure. Especially, instead of the generally used conic section flexure hinge a parallelogram shaped flexure hinge is used that improves the flexibility of the lever. An Finite Element Analysis is performed on each motion stage lever where optimal design was achieved using Response Surface Methodology(RSM).

Lost Motion Analysis for Nonlinearity Identification of a 6-DOF Ultra-Precision Positioning Stage (6-자유도 초정밀 위치 결정 스테이지의 비선형성 식별을 위한 로스트 모션 해석)

  • Shin, Hyun-Pyo;Moon, Jun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.263-268
    • /
    • 2015
  • This paper describes lost motion analysis for a novel 6-DOF ultra-precision positioning stage. In the case of flexure hinge based precision positioning stage, lost motion is generated when the displacement of actuator is not delivered completely to the end-effector because of the elasticity of flexure hinge. Consequently, it is need to compute amount of lost motion to compensate the motion or to decide appropriate control method for precision positioning. Lost motion analysis for the vertical actuation unit is presented. The analysis results are presented in two ways: analytic and numerical analyses. It is found that they closely coincide with each other by 1% error. In finite element analysis result, the amount of lost motion is turned out to be about 3%. Although, the amount is not so large, it is necessary procedure to check the lost motion to establish the control method.

Chaotic Dynamics in Tobacco's Addiction Model

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.322-331
    • /
    • 2014
  • Chaotic dynamics is an active area of research in biology, physics, sociology, psychology, physiology, and engineering. This interest in chaos is also expanding to the social scientific fields such as politics, economics, and argument of prediction of societal events. In this paper, we propose a dynamic model for addiction of tobacco. A proposed dynamical model originates from the dynamics of tobacco use, recovery, and relapse. In order to make an addiction model of tobacco, we try to modify and rescale the existing tobacco and Lorenz models. Using these models, we can derive a new tobacco addiction model. Finally, we obtain periodic motion, quasi-periodic motion, quasi-chaotic motion, and chaotic motion from the addiction model of tobacco that we established. We say that periodic motion and quasi-periodic motion are related to the pre-addiction or recovery stage, respectively. Quasi-chaotic and chaotic motion are related to the addiction stage and relapse stage, respectively.

Design of the precision micro-positioning stage (초정밀 마이크로 위치결정 스테이지의 설계)

  • 한창수;김경호;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.539-542
    • /
    • 1997
  • We present a micro-positioning stage that has minimized geometrical error and can drive in the 4-axis. This stage divided into two parts: $Z\theta_x$ $\theta_y$, motion stage and$\theta_z$ motion stage. These stages are constructed in flexure hinges, piezoelectric actuators and displacement scnsors. The dynamic model for each stage is obtained and their FE (finite element) models are made. Using the Lagrange's equation, the motion of equation is found. Through the parametric analysis and FE analysis, sensitiv~ty of the design parameters is executed. Finally, fundamental frequencies, maximum stress, and displacement sensitivity for each stage are obtained. We expect that this micro-positioning stage be a useful micro-alignment device for various applications.

  • PDF