• 제목/요약/키워드: motion controller

검색결과 1,229건 처리시간 0.024초

Cloud Robotics Platform 환경에서 Node간 안전한 통신 기법 (Secure Scheme Between Nodes in Cloud Robotics Platform)

  • 김형주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권12호
    • /
    • pp.595-602
    • /
    • 2021
  • 로봇은 주변 상황을 인지하고 Task를 부여받는 software oriented 형상으로 발전하고 있다. Cloud Robotics Platform은 로봇에 Service Oriented Architecture 형상을 지원하기 위한 방법으로, 상황에 따라 필요한 Task와 Motion Controller를 클라우드 기반으로 제공할 수 있는 방안이다. 휴머노이드 로봇으로 진화할수록 로봇은 로봇 3대 원칙에 따라 보편화된 일상생활 속에서 인간에게 도움을 주기 위해 사용될 것이다. 따라서 특정 개인만을 위한 로봇 이외에도, 상황에 따라 모든 인간에게 도움을 줄 수 있는 공공재로써의 로봇이 보편화될 것이다. 따라서, 생성하는 정보는 사람, 로봇, 로봇에 지능을 부여하는 클라우드 상의 서비스 애플리케이션, 로봇과 클라우드를 이어주는 클라우드 브릿지로 구성될 것으로 분석되는 Cloud Robotics Computing 환경에서 정보보안의 중요성은 인간의 생명 및 안전을 위해 필수불가결한 요소로 자리잡게 될 것이다. 본 논문에서는 지능화된 로봇을 위한 Cloud Robotics Computing 환경에서 사람, 로봇, 클라우드 브릿지, 클라우드 시스템간 통신 시 보안을 제공하여 해킹으로부터 안전하고 개인의 정보가 보호되는 로봇 서비스가 가능할 수 있는 Security Scheme을 제안한다.

Proposal for a Sensory Integration Self-system based on an Artificial Intelligence Speaker for Children with Developmental Disabilities: Pilot Study

  • YeJin Wee;OnSeok Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1216-1233
    • /
    • 2023
  • Conventional occupational therapy (OT) is conducted under the observation of an occupational therapist, and there are limitations in measuring and analyzing details such as degree of hand tremor and movement tendency, so this important information may be lost. It is therefore difficult to identify quantitative performance indicators, and the presence of observers during performance sometimes makes the subjects feel that they have to achieve good results. In this study, by using the Unity3D and artificial intelligence (AI) speaker, we propose a system that allows the subjects to steadily use it by themselves and helps the occupational therapist objectively evaluate through quantitative data. This system is based on the OT of the sensory integration approach. And the purpose of this system is to improve children's activities of daily living by providing various feedback to induce sensory integration, which allows them to develop the ability to effectively use their bodies. A dynamic OT cognitive assessment tool for children used in clinical practice was implemented in Unity3D to create an OT environment of virtual space. The Leap Motion Controller allows users to track and record hand motion data in real time. Occupational therapists can control the user's performance environment remotely by connecting Unity3D and AI speaker. The experiment with the conventional OT tool and the system we proposed was conducted. As a result, it was found that when the system was performed without an observer, users can perform spontaneously and several times feeling ease and active mind.

동적 지반강성을 갖는 지반-구조물계의 실시간 하이브리드 진동대 실험 (Real-Time Hybrid Shaking Table Test of a Soil-Structure Interaction System with Dynamic Soil Stiffness)

  • 이성경;민경원
    • 한국전산구조공학회논문집
    • /
    • 제20권2호
    • /
    • pp.217-225
    • /
    • 2007
  • 본 연구에서는 건물모델만을 물리적인 실험체로 이용하여 동적 지반강성을 갖는 지반-구조물계의 동적거동을 모사하기 위한 하이브리드 진동대 실험법을 제안하고 이를 실험적으로 검증하였다. 본 연구에서 제안되는 실험방법은 상부구조물과 진동대의 가속도를 계측하여 진동대 제어기로 피드백하고, 전체 지반-구조물계의 동적거동을 묘사하기 위해 요구되는 기초부분의 절대가속도 응답(가속도 피드백 방법) 또는 절대속도 응답(속도 피드백 방법)을 계산하여 진동대를 구동시키는 방법이다. 지반부분을 계산하기 위해서 이론적인 동적지반강성을 제안방법에 따라서 다르게 근사화하여 진동대 제어기에 반영함으로써 실험을 수행하였다. 기초 고정계 모델에 대한 실험으로부터 계측된 응답과 본 논문에서 가정한 지반-구조물 계에 대한 실험으로부터 측정된 응답을 비교하고, 진동대 제어기에 반영한 동적지반강성과 실험데이터를 이용하여 식별된 동적지반강성을 비교함으로써 본 논문에서 제안된 실험방법의 유효성을 검증하였다.

이중 증분 엔코더에 기초한 초정밀 회전각도 변위 검출 알고리즘 개발 (Development of an Algorithm for Detecting Angular Bisplacement with High Accuracy Based on the Dual-Encoder)

  • 이세한
    • 한국정밀공학회지
    • /
    • 제25권8호
    • /
    • pp.29-36
    • /
    • 2008
  • An optical rotary encoder is easy to implement for automation system applications. In particular, the output of the encoder has a digital form pulse, which is also easy to be connected to a popular digital controller. By using an incremental encoder and a counting device, it is easy to measure angular displacement, as the number of the output pulses is proportional to the rotational displacement. This method can only detect the angular placement once a pulse signal comes out of the encoder. The angular displacement detection period is strongly subject to the change of the angular displacement in case of ultimate low velocity range. They have ultimate long detection period or cannot even detect angular displacement at near zero velocity. This paper proposes an algorithm for detecting angular displacement by using a dual encoder system with two encoders of normal resolution. The angular displacement detecting algorithm is able to keep detection period moderately at near zero velocity and even detect constant angular displacement within nominal period. It is useful for motion control applications in case of changing rotational direction at which there occurs zero velocity. In this paper, various experimental results are shown for the angular displacement detection algorithm.

전자제어 현가장치를 위한 전기유변유체 쇽 업소버의 설계 및 성능평가 (Design and Performance Evaluation of Electro-rheological Shock Absorber for Electronic Control Suspension)

  • 성금길;최승복;박민규
    • 한국소음진동공학회논문집
    • /
    • 제20권5호
    • /
    • pp.444-452
    • /
    • 2010
  • This paper presents design and performance evaluation of electro-rheological(ER) shock absorber for electronic control suspension(ECS). In order to achieve this goal, a cylindrical ER shock absorber that satisfies design specifications for a mid-sized commercial passenger vehicle is designed and manufactured to construct ER suspension system for ECS. After experimentally evaluating dynamic characteristics of the manufactured ER shock absorber, the quarter-vehicle ER suspension system consisting of sprung mass, spring, tire and the ER shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle ER suspension system, the skyhook controller is implemented for the realization of quarter-vehicle ER suspension system. In order to present control performance of ER shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

주기변화에 따른 RC 서보모터 회전범위 비교실험 (The Comparison Experiment of Rotation Range of RC Servo Motors According to change of a Periods)

  • 차영엽
    • 제어로봇시스템학회논문지
    • /
    • 제17권11호
    • /
    • pp.1179-1182
    • /
    • 2011
  • RC servos are electro-mechanical devices that respond to a control signal, which instructs them to move their output shaft to a certain position. A servo is normally plugged into a radio receiver with a three pin connector. The three wires are a power (usually 4.8V to 6.0V), a ground, and a signal wire. The signal wire carries a PWM (Pulse-Width Modulation) signal consisting of a 1-2msec pulse repeated 50 times a second. A 1.5msec pulse will tell the servo to move to its output shaft to the center position, 0 degrees. For a servo with a 180 degree of motion, a 1msec pulse will move the servo to -90 degrees, and a 2msec pulse will move the servo to +90 degrees. In order to development a humanoid robot, mechanical design, fixtures design, analysis of kinematics, implementation moving program, selection of RC servo motor and controller are required. This study was performed to experimentally compare the rotation range of RC servo motors according to change of a periods.

타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰 (Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure)

  • 맹영준;성민상;최승복;권오영
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1159-1165
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.

크루즈선의 횡동요 제어시스템에 미치는 포드 각속도의 영향 (The Effect of the Turning Rate of the Pod Propeller on the Roll Control System of the Cruise Ship)

  • 이성균;이재훈;이기표;최진우
    • 대한조선학회논문집
    • /
    • 제49권1호
    • /
    • pp.14-25
    • /
    • 2012
  • Recently, the application and installation of the pod propeller to the cruise ship is dramatically increased. It is because pod propulsion system allows a lot of flexibility in design of the internal arrangement of a ship. To reflect this trend, many researches have conducted to use the pod propeller for the roll stabilization of a ship. In the paper, a roll stabilization controller is designed by using fins and pod propellers as the control actuators for cruise ships. Two kinds of control algorithms are adopted for the roll control system; LQR (Linear Quadratic Regulator) algorithm and frequency-weighted LQR algorithm. Through the numerical simulation, the effect of the turning rate of the pod propeller on the roll control system is analyzed. Analysis of the simulation results indicated that the turning rate of the pod propellers is one of the important parameters which give the significant effects on the roll stabilization.

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

머시닝센터 장착형 연마 로봇의 성능 향상에 관한 연구 (A study on the improvement of performance of polishing robot attached to machining center)

  • 조영길;이민철;전차수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1275-1278
    • /
    • 1997
  • Cutting process has been automated by progress of CNC and CAD/CAM, but polishing process has been depended on only experiential knowledge of expert. To automate the polishing pricess polishing robot with 2 degrees of freedom which is attached to a machining center with 3 degrees of freedom has been developed. this automatic polishing robot is able to keep the polishing tool normal on the curved surface of die to improve a performance of polishing. Polishing task for a curved surface die demands repetitive operation and high precision, but conventional control algorithm can not cope with the problem of disturbance such as a change of load. In this research, we develop robust controller using real time sliding mode algorithm. To obtain gain parameters of sliding model control input, the signal compression method is used to identify polishing robot system. To obtain an effect of 5 degrees of freedom motion, 5 axes NC data for polishing are divided into data of two types for 3 axis machining center and 2 axis polishing are divided into data of two types for 3 axis machining center and 2 axis polishing robot. To find an efficient polishing condition to obtain high quality, various experiments are carried out.

  • PDF