• 제목/요약/키워드: most oil film thickness scarring wear

검색결과 3건 처리시간 0.021초

파이어링 상태의 일정 축 각속도에서 엔진 베어링의 마모 해석 - Part I: 베어링 마모발생 부위 파악 (Wear Analysis of Engine Bearings at Constant Shaft Angular Speed on a Firing State - Part I: Understanding of Bearing Wear Region)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.93-107
    • /
    • 2018
  • The purpose of Part I of this study is to find the potential region of wear scarring on engine journal bearings operating at a constant angular crank shaft velocity under firing conditions. To do this, we calculate the applied loads and eccentricities of a big-end journal bearing installed on a four-stroke and four-cylinder engine at every crank angle. Then, we find potential wear regions, such as a minimum oil film thickness, at every crank angle below most oil film thickness scarring wear (MOFTSW) obtained based on the concept of the centerline average surface roughness. Thus, the wear region is defined as a set of each film thickness below the MOFTSW at every crank angle. In this region, the wear volume changes according to the wear depth and wear angle, depending on the minimum oil film thickness at every crank angle. The total wear volume is the summation during one cycle. Graphical views of the region in the two-dimensional coordinates show the crank angle and bearing angle along the journal center path, indicating the position of the minimum oil film thickness. The results of wear analysis show that the possible wear region is located at a few tens of angles behind the upper center of a big-end bearing at maximum power rpm.

파이어링 상태의 일정 축 각속도에서 엔진베어링의 마모 해석 - Part II: 저어널베어링 마모 계산 (Wear Analysis of Engine Bearings at Constant Shaft Angular Speed during Firing State - Part II: Calculation of the Wear on Journal Bearings)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.146-159
    • /
    • 2018
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings of a four-strokes and four-cylinder engine operating at a constant angular crank shaft speed during firing conditions. To decide whether the lubrication state of a journal bearing is in the possible region of wear scar, we utilize the concept of the centerline average surface roughness to define the most oil film thickness scarring wear (MOFTSW) on two rough surfaces. The wear volume is calculated from the wear depth and wear angle, determined by the magnitude of each film thickness on a set of oil films with thicknesses lower than the MOFTSW at every crank angle. To calculate the wear volume at one contact, the wear range ratio during one cycle is used. The total wear volume is then determined by accumulating the wear volume at every contact. The fractional film defect coefficient, asperity load sharing factor, and modified specific wear rate for the application of the mixed-elasto-hydrodynamic lubrication regime are used. The results of this study show that wear occurs only at the connecting-rod big-end bearing. Thus, simulation results of only the big-end bearing are illustrated and analyzed. It is shown that the wear volume of each wear scar group occurs consecutively as the crank angle changes, resulting in the total accumulated wear volume.

엔진 파이어링동안 일정 축 각속도에서 비고정식 피스톤-핀과 연결봉-소단부 부싱 및 피스톤-핀 보스의 접촉면 마모해석 (Wear Analysis at the Interface of Connecting-Rod Small-End Bushing and Piston-Pin Boss with a Floating Piston-Pin at Constant Angular Velocity during Engine Firing)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제36권3호
    • /
    • pp.168-192
    • /
    • 2020
  • In recently designed diesel engines, the running conditions for piston-pin bearings have become severe because of the higher combustion pressure and increased temperature. Moreover, the metal removal from the bushing material has strongly reduced the ability of the antifriction material to accept asperity contacts. Therefore, it is necessary to find ways of reducing wear scar on the connecting-rod small-end bushing and piston-pin boss bearing related to the higher combustion pressure on the power cell of an engine. In this work, the position and level of material removal from the surfaces of the bushing and bearing under such severe operating conditions - for example, maximum power and torque conditions of a passenger car diesel engine - are estimated for several combinations of surface roughness. First, piston-pin rotating motion is investigated by calculating the friction coefficient at piston-pin bearings, the oil film thickness, and the frictional torques induced by hydrodynamic shear stress. Subsequently, the wear scarring on the surfaces of a connecting-rod small-end bushing and two piston-pin boss bearings related to piston-pin rotational motion is numerically calculated under the maximum power and torque operating conditions. This work is helpful to determine the reasonable surface roughness of the bushing and bearing for reducing wear volume occurring at the interface between a bearing and a shaft.