• 제목/요약/키워드: most oil film thickness scaring wear

검색결과 2건 처리시간 0.015초

파이어링 시동 사이클 초기에서의 엔진 베어링 마모 시뮬레이션 (Wear Simulation of Engine Bearings in the Beginning of Firing Start-up cycle)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제35권4호
    • /
    • pp.244-266
    • /
    • 2019
  • The purpose of this study is to estimate the wear volumes of engine journal bearings operating at variable angular velocity of a shaft in the beginning of firing start-up cycle. To do this, first we find the potential region of wear scar on engine journal bearings where the applied bearing load and crank shaft velocity are variable. The potential wear regions are discovered by finding minimum oil film thickness at every crank angle existing below most oil film thickness scaring wear (MOFTSW) obtained based on the concept of the centerline average surface roughness. Then we calculate the wear volume from the wear depth and two wear angles decided by the magnitude of each film thickness lower than MOFTSW at every crank angle. The results show that the expected wear region is located at a few bearing angles after and/or behind the upper center of a big-end bearing and the lower center of a main bearing. And the real wear region is similar to the estimated wear region. Further we find that the wear scar on an engine journal bearing may occur at re-starting time after switch-off of a start motor especially under the condition of high oil temperature.

파이어링 상태의 일정 축 각속도에서 엔진 베어링의 마모 해석 - Part I: 베어링 마모발생 부위 파악 (Wear Analysis of Engine Bearings at Constant Shaft Angular Speed on a Firing State - Part I: Understanding of Bearing Wear Region)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.93-107
    • /
    • 2018
  • The purpose of Part I of this study is to find the potential region of wear scarring on engine journal bearings operating at a constant angular crank shaft velocity under firing conditions. To do this, we calculate the applied loads and eccentricities of a big-end journal bearing installed on a four-stroke and four-cylinder engine at every crank angle. Then, we find potential wear regions, such as a minimum oil film thickness, at every crank angle below most oil film thickness scarring wear (MOFTSW) obtained based on the concept of the centerline average surface roughness. Thus, the wear region is defined as a set of each film thickness below the MOFTSW at every crank angle. In this region, the wear volume changes according to the wear depth and wear angle, depending on the minimum oil film thickness at every crank angle. The total wear volume is the summation during one cycle. Graphical views of the region in the two-dimensional coordinates show the crank angle and bearing angle along the journal center path, indicating the position of the minimum oil film thickness. The results of wear analysis show that the possible wear region is located at a few tens of angles behind the upper center of a big-end bearing at maximum power rpm.