• Title/Summary/Keyword: mortars

Search Result 437, Processing Time 0.242 seconds

Influences of Admixtures on the Properties of Cement Mortars in Floors Using Expansion Agent (팽창재를 사용하는 바닥 모르타르의 특성에 미치는 혼합재료의 영향)

  • 정성철;표대수;송명신;홍상희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.921-924
    • /
    • 2000
  • The purpose of this paper is to investigate the effects of admixture such as AE water reducing agent and Flyash on properties of cement mortar for floor. As for the effects of AE water reducing agent kinds, fluidity and air content increase in order for melamine type, lignine type and naphtalene type. As Flyash contents increase, fluidity shows high, but air content shows decline tendency. compressive strength according to AE water reducing agent kinds increase in order for melamine type, lignine type and naphtalene type. As AE water reducing agent content increases, it shows to be decreased. As for the effects of Flyash, it retards at early age but at later age it gains high with increase of Flyash contents due to pozzanic reaction. Drying shrinkage shows to be docreased slightly with increase of AE water reducing agent.

Influences of Quality of Aggregate on the Properties of Cement Mortars in Floors Using Expansion Agent (팽창재를 사용한 바닥 모르타르의 특성에 미치는 골재품질의 영향)

  • 송명신;표대수;정성철;홍상희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.929-932
    • /
    • 2000
  • In this paper, physical properties of fresh and hardened mortar for floor using expansion agent are described under various grain shape, grading and chloride contents of aggregates. According to experimental results, as fineness modulous increase, fluidity show high it also shows high with cement mortar using riversand and continuous distribution of grading. We can not detect any difference in fluidity according to chloride contents. Air content shows to be decreased with crushed stone having large fineness modulous and continuous distribute on of grading. chloride content does not influence on the air content. compressive strength tends to increase when crushed sand with continuous distribution of grading is used and chloride contents decreases.

A Study on Properties of the High-Strength Concrete Admixed with II-Anhydrite and Pozzolanic Fine Power (불산부생 II 형 무수석고와 포졸란 미분체가 혼입된 고강도콘크리트의 특성에 관한 연구)

  • 조민형;길배수;전진환;김도수;남재현;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.136-145
    • /
    • 1997
  • The purpose of this study is to develope of alternative adimixture for manufacture of PHC pile(compressive strength above 800kg/$\textrm{cm}^2$). For the investigation, properties of alternative admixture admixed with II-anhydrite and pozollanic fine powders(e.q., Fly-ash, Silica-Fume), the fluidity and viscosity in the cement pastes, the fluidity and compressive strength in mortars at steam curing condition, were respectively examined. Also, properties of compressive strength of concretes with exiting admixture(specimen name SM) and alterantive admixture(specimen name AP) for PHC pile, at steam and standard curing condition, were compared each other. As a result of this experimental study, it was found that specimens admixed with II-anhydrite and pozollanic fine powders had an increase on the fluidity of cement paste and mortar, and compressive strength of mortar and concrete was as good as concrete with SM.

  • PDF

Utilization of waste fine tailing as cement mineral admixture (폐광미 미립분의 시멘트 혼화재로의 활용)

  • An, Yang-Jin;Yu, Seung-Wan;Mun, Kyoung-Ju;Park, Won-Chun;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.381-384
    • /
    • 2005
  • The purpose of this study reutilization of waste fine tailing (FT) as admixture for cement and concrete. Various admixtures were made of Fine tailings and 2 Types of OPC, fly-ash and blast furnace slag. Cement mortars and concrete with FT are tested for fluidity and compressive strength. Also, the hydration reactivity of cement mortar with FT was examined by XRD and SEM morphology analysis. This work showed that the waste fine tailing could be effectively utilized as replacement materials of cement without any decrease in the strength if we can control the blaine of materials like cement, blast furnace slag and fly ash.

  • PDF

A Study on the engineering Properties of Repairing Epoxy-Mortar According to Hardener types for Structures under Underwater and Humidity (수중 및 습윤 환경구조물 보수용 에폭시 모르타르의 경화제 종류에 따른 공학적 특성에 관한 연구)

  • Park Duk Jun;Park Sang Hun;Lee Dae Kyung;Bae Kee Sun;Kim Jin Man;Back Sin Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.277-280
    • /
    • 2005
  • Epoxy-mortar composites have been wildly used as finishing and repairing materials in the construction because of their excellent properties. Conventional epoxy-mortars and concretes have an inferior applicability and cost performance ratio due to the two component mixing of the epoxy resin and hardener. In this study, we examined the engineering effect of compressive strength and flexible strength according to the various epoxy-hardener in underwater and humidity environment, and evaluated the hardener types and physical effect of Epoxy mortar using cement binder in underwater and air condition. In this study, it was clarified that the engineering properties of repairing epoxy-motars were effected by the type of hardener.

  • PDF

Strength Development of No Cement Ternary Mortar (3성분계 무시멘트 모르타르의 강도발현 특성)

  • Jung, Yu-jin;Kim, Young-su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.108-109
    • /
    • 2018
  • Cement is the most widely used but generates a lot of CO2, so we need a material to replace it. Using industrial by-products such as Silica Fume(SF), Blast furnace Slag(BS) and Fly Ash(FA) bring some advantages including CO2 reduction and resource recycling. However, there is a limit to improve performance when using only one material. Therefore, the synergy effects of No cement binary mortar and ternary mortar were analyzed and compared. As a result, No cement ternary mortar had the strength higher than binary mortar. among ternary mortars, the specimen mixed 50% of BS had the highest strength. However, when SF was mixed by 20%, the flowability reduces. so 10% of SF, 40% of FA and 50% of BS is considered as the optimal mixing ratio.

  • PDF

Strength Properties of High-Strength Polymer Cement Mortars Containing VAE Powder (VAE계 분말을 혼입한 고강도 폴리머 시멘트 모르타르의 강도 특성)

  • Choi, Jung-Gu;Lee, Gun-Cheol;Lee, Gun-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.19-20
    • /
    • 2014
  • This study is to find out the tensile strength and bonding strength of VAE powder as a preliminary study for the application of the powder to the high strength concrete. The result of the study showed that the compressive strength decreases when more polymers is put into the concrete. On the other hand, it showed that the tensile strength and the bonding strength get improved when the more polymers are put into the concrete. Especially in case of the mixture for high strength concrete, it was found out that more strength is produced than the ordinary concrete.

  • PDF

Kinetics of the water absorption in GGBS-concretes: A capillary-diffusive model

  • Villar-Cocina, E.;Valencia-Morales, E.;Vega-Leyva, J.;Antiquera Munoz, J.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • We study the kinetics of absorption of water in Portland cement concretes added with 60, 70 and 80% of granulated blast furnace slag (GGBS) cured in water and at open air and preheated at 50 and $100^{\circ}C$. A mathematical model is presented that allows describing the process not only in early ages where the capillary sorption is predominant but also for later and long times where the diffusive processes through the finer and gel pores are considered. The fitting of the model by computerized methods enables us to determine the parameters that characterize the process: i.e., the sorptivity coefficient (S) and diffusion coefficient (D). This allows the description of the process for all times and offers the possibility to know the contributions of both, the diffusive and capillary processes. The results show the influence of the curing regime and the preheating temperature on the behavior of GGBS mortars.

Using generalized regression neural network (GRNN) for mechanical strength prediction of lightweight mortar

  • Razavi, S.V.;Jumaat, M.Z.;Ahmed H., E.S.;Mohammadi, P.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.379-390
    • /
    • 2012
  • In this paper, the mechanical strength of different lightweight mortars made with 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and 100 percentage of scoria instead of sand and 0.55 water-cement ratio and 350 $kg/m^3$ cement content is investigated. The experimental result showed 7.9%, 16.7% and 49% decrease in compressive strength, tensile strength and mortar density, respectively, by using 100% scoria instead of sand in the mortar. The normalized compressive and tensile strength data are applied for artificial neural network (ANN) generation using generalized regression neural network (GRNN). Totally, 90 experimental data were selected randomly and applied to find the best network with minimum mean square error (MSE) and maximum correlation of determination. The created GRNN with 2 input layers, 2 output layers and a network spread of 0.1 had minimum MSE close to 0 and maximum correlation of determination close to 1.

Strength behaviour and hardening mechanism of alkali activated fly ash Mortars (알카리 활성화에 의한 fly ash 경화체의 강도 발현 메카니즘에 관한 연구)

  • Jo Byung Wan;Moon Rin Gon;Park Seung Kook;Lim Sang Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.321-324
    • /
    • 2004
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. So it is needed to study the binder obtained by chemically activation of pozzolanic materials by means of a substitute for the exiting cement. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time. Also Scanning electron microscopy and X-Ray diffraction analysis show what the reaction products of the alkali activated fly ash are.

  • PDF