• Title/Summary/Keyword: morphology controlling

Search Result 184, Processing Time 0.019 seconds

THEORETICAL STUDY ON OBSERVED COLOR-MAGNITUDE DIAGRAMS

  • Lee, See-Woo
    • Journal of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.41-70
    • /
    • 1979
  • From $B\ddot{o}hm$-Vitense's atmospheric model calculations, the relations, [$T_e$, (B-V)] and [B.C, (B-V)] with respect to heavy element abundance were obtained. Using these relations and evolutionary model calculations of Rood, and Sweigart and Gross, analytic expressions for some physical parameters relating to the C-M diagrams of globular clusters were derived, and they were applied to 21 globular clusters with observed transition periods of RR Lyrae variables. More than 20 different parameters were examined for each globular cluster. The derived ranges of some basic parameters are as follows; $Y=0.21{\sim}0.33,\;Z=1.5{\times}10^{-4}{\sim}4.5{\times}10^{-3},\;age,\;t=9.5{\sim}19{\times}10^9$ years, mass for red giants, $m_{RG}=0.74m_{\odot}{\sim}0.91m_{\odot}$, mass for RR Lyrae stars, $m_{RR}=0.59m_{\odot}{\sim}0.75m_{\odot}$, the visual magnitude difference between the turnoff point and the horizontal branch (HB), ${\Delta}V_{to}=3.1{\sim}3.4(<{\Delta}V_{to}>=3.32)$, the color of the blue edge of RR Lyrae gap, $(B-V)_{BE}=0.17{\sim}0.21=(<(B-V)_{BE}>=0.18),\;[\frac{m}{L}]_{RR}=-1.7{\sim}-1.9$, mass difference of $m_{RR}$ relative to $m_{RG},(m_{RG}-m_{RR})/m_{RG}=0.0{\sim}0.39$. It was found that the ranges of derived parameters agree reasonably well with the observed ones and those estimated by others. Some important results obtained herein can be summarized as follows; (i) There are considerable variations in the initial helium abundance and in age of globular clusters. (ii) The radial gradient of heavy element abundance does exist for globular clusters as shown by Janes for field stars and open clusters. (iii) The helium abundance seems to have been increased with age by massive star evolution after a considerable amount (Y>0.2) of helium had been attained by the Big-Bang nucleosynthesis, but there is not seen a radial gradient of helium abundance. (iv) A considerable amount of heavy elements ($Z{\sim}10{-3}$) might have been formed in the inner halo ($r_{GC}$<10 kpc) from the earliest galactic co1lapse, and then the heavy element abundance has been slowly enriched towards the galactic center and disk, establishing the radial gradient of heavy element abundance. (v) The final galactic disk formation might have taken much longer by about a half of the galactic age than the halo formation, supporting a slow, inhomogeneous co1lapse model of Larson. (vi) Of the three principal parameters controlling the morphology of C-M diagrams, it was found that the first parameter is heavy clement abundance, the second age and the third helium abundance. (vii) The globular clusters can be divided into three different groups, AI, BI and CII according to Z, Y an d age as well as Dickens' HB types. BI group clusters of HB types 4 and 5 like M 3 and NGC 7006 are the oldest and have the lowest helium abundance of the three groups. And also they appear in the inner halo. On the other hand, the youngest AI clusters have the highest Z and Y, and appear in the innermost halo region and in the disk. (viii) From the result of the clean separations of the clusters into three groups, a three dimensional classification with three parameters, Z, Y and age is prsented. (ix) The anomalous C-M diagrams can be expalined in terms of the three principal parameters. That is, the anomaly of NGC 362 and NGC 7006 is accounted for by the smaller age of the order of $1{\sim}2{\times}10^9$ years rather than by the helium abundance difference, compared with M 3. (x) The difference in two Oosterhoff types I and II can be explained in terms of the mean mass difference of RR Lyrae variables rather than in terms of the helium abundance difference as suggested by Stobie. The mean mass of the variables in Oosterhoff type I clusters is smaller by $0.074m_{\odot}$ which is exactly consistent with Rood's estimate. Since it was found that the mean mass of RR Lyrae stars increases with decreasing Z, the two Oosterhoff types can be explained substantially by the metal abundance difference; the type II has Z<$3.4{\times}10^{-4}$, and the type I has higher Z than the type II.

  • PDF

Can high serum anti-M${\ddot{u}}$llerian hormone levels predict the phenotypes of polycystic ovary syndrome (PCOS) and metabolic disturbances in PCOS patients?

  • Hwang, Yu Im;Sung, Na Young;Koo, Hwa Seon;Cha, Sun Hwa;Park, Chan Woo;Kim, Jin Yeong;Yang, Kwang Moon;Song, In Ok;Koong, Mi Kyoung;Kang, Inn Soo;Kim, Hye Ok
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.40 no.3
    • /
    • pp.135-140
    • /
    • 2013
  • Objective: To evaluate correlations between serum anti-M${\ddot{u}}$llerian hormone (AMH) levels, phenotypes of polycystic ovary syndrome (PCOS), obesity, and metabolic parameters in patients with PCOS. Methods: A total of 175 patients with PCOS were diagnosed according to the Rotterdam Consensus were included. Exclusion criteria were age over 40, FSH>25 mIU/mL, and 17a-OHP>1.5 ng/mL. The Phenotypes of PCOS were divided into a severe form (oligo-anovulation, ANOV/hyperandrogenism/polycystic ovary morphology [PCOM]; n=59) and a mild form without HA (ANOV/PCOM, n=105). The serum AMH levels were classified into 3 groups (<5 vs. 5-10 vs. >10 ng/mL). Obesity was defined as body mass index (BMI) ${\geq}25kg/m^2$ (n=34). Results: The mean age was $25.9{\pm}5.7$ year and mean AMH level was $10.1{\pm}5.4$ ng/mL. The BMI ($kg/m^2$) was higher in group 1 ($24.2{\pm}6.3$) than in group 2 ($21.9{\pm}4.3$, p=0.046) or group 3 ($21.6{\pm}3.3$, p=0.019). There was no difference among the three groups in age, menstrual interval, antral follicle counts, androgens, or other metabolic parameters. The obesity group showed significantly lower AMH ($7.7{\pm}3.9$ ng/mL vs. $10.7{\pm}5.6$ ng/mL), p=0.004) and low-density lipoprotein levels ($93.1{\pm}21.2$ mg/dL vs. $107.5{\pm}39.3$ mg/dL, p=0.031), and showed higher total T ($0.74{\pm}0.59$ L vs. $0.47{\pm}0.36$ ng/mL, p=0.001), free T ($2.01{\pm}1.9$ vs. $1.04{\pm}0.8$ pg/mL, p=0.0001), and free androgen index ($6.2{\pm}7.9$ vs. $3.5{\pm}3.0$, p=0.003). After controlling for age factors and BMI, the serum AMH levles did not show any significant correlations with other hormonal or metabolic parmeters. Conclusion: For PCOS patients under the age 40, serum AMH is not negatively correlated with age. High serum AMH levels can not predict the phenotype of PCOS and metabolic disturbances in PCOS patients in the non-obese group. Further study might be needed to define the relation more clearly.

Wind-and Rain-induced Variations of Water Column Structures and Dispersal Pattern of Suspended Particulate Matter (SPM) in Marian Cove, the South Shetland Islands, West Antarctica during the Austral Summer 2000 (서남극 남 쉐틀랜드 군도 마리안 소만에서 바람 및 강수에 의한 여름철 수층 구조의 변화와 부유물질 분산)

  • 유규철;윤호일;오재경;강천윤;김예동;배성호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.357-368
    • /
    • 2003
  • Time-series CTDT (Conductivity/Temperature/Depth/Transmissivity) were obtained at one point near tidewater glacier of Marian Cove (King George Islands, Antarctica) to present water column properties and SPM (suspended particulate matter) dispersal pattern in relation with tide, current, meteorological data, and SPM concentration. Four layers were divided from the water column characteristics measured in the interval of an hour for about 2 days: 1) cold, fresh, and turbid surface mixed layer between 0-20 m in water depth, 2) warm, saline, and relatively clean Maxwell Bay inflow between 20-40 m in water depth, 3) turbid/cold tongue of subglacial discharges compared with the ambient waters between 40-70 m in water depth, and 4) cold, saline, and clean bottom water beneath 70 m in water depth. Surface plume, turbid freshwater at coastal/cliff area in late summer (early February), had the characteristic temperature and SPM concentration according to morphology, glacial condition, and composition of sediments. The restrict dispersion only over the input source of meltwater discharges was due to calm wether condition. Due to strong wind-induced surface turbulence, fresh and turbid surface plume, englacial upwelling cold water, glacier-contact meltwater, and Maxwell Bay inflow was mixing at ice-proximal zone and the consequent mixed layer deepened at the surface. Large amount of precipitation, the major controlling factor for increasing short-term glacial discharges, was accompanied by the apparent development of subglacial discharge that resulted in the rapid drop of salinity below the mid depth. Although amount of subglacial discharge and englacial upwelling may be large, however, their low SPM concentration would have small influence on bottom deposition of terrigenous sediments.

Longitudinal Pattern of Large Wood Distribution in Mountain Streams (산지계류에 있어서 유목의 종단적 분포특성)

  • Seo, Jung Il;Chun, Kun Woo;Kim, Min Sik;Yeom, Kyu Jin;Lee, Jin Ho;Kimura, Masanobu
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.52-61
    • /
    • 2011
  • Whereas recent researches have elucidated the positive ecological roles of large wood (LW) in fishbearing channels, LW is also recognized as a negative factor of log-laden debris flows and floods in densely populated areas. However in Republic of Korea, no study has investigated longitudinal variations of LW distribution and dynamic along the stream corridor. Hence to elucidate 1) physical factors controlling longitudinal distribution of LW and 2) their effect on variation in LW load amount, we surveyed the amount of LW with respect to channel morphology in a mountain stream, originated from Mt. Ki-ryong in Inje, Gangwondo. Model selection in the Generalized Linear Model procedure revealed that number of boulder (greater than or equal to 1.0 m in diameter), bankfull channel width and their interaction were the best predictors explaining LW load volume per unit channel segment area (unit LW load). In general, boulders scattered within small mountain streams influence LW retention as flow obstructions. However, in this study, we found that the effect of the boulders vary with the channel width; that is, whereas the unit LW load in the segment with narrow channel width increased continuously with increasing boulder number, it in the segment with wide channel width did not depend on the boulder number. This should be because that, in two channels having different widths, the rates of channel widths reduced by boulders are different although boulder numbers are same. Our findings on LW load varying with physical factors (i.e., interaction of boulder number and channel width) along the stream corridor suggest understanding for longitudinal continuum of hydrogeomorphic and ecologic characteristics in stream environments, and these should be carefully applied into the erosion control works for systematic watershed management and subsequent disaster prevention.