• Title/Summary/Keyword: morphology and viscosity

Search Result 133, Processing Time 0.071 seconds

Effect of Viscosity on the Morphology of Electrospun Polyacrylonitrile Fibers as a Linear Actuator and Artificial Muscles

  • Kim, Ye-Na;Lee, Deuk-Yong;Lee, Myung-Hyun;Lee, Se-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.203-206
    • /
    • 2006
  • Polyacrylonitrile (PAN) nanofibers, which are pH-sensitive and exhibit soft actuation as a linear actuator and artificial muscles, were prepared by electrospinning to investigate the effect of viscosity on the morphology of PAN fibers. Experimental results revealed that higher viscosity is critical for the formation of unbeaded nanofibers because surface tension is almost constant throughout the experiment. Uniform, smooth, and continuous fibers with diameters of about 700 nm were achieved for the 10 wt% PAN fibers at a flow rate of 0.5 mL/h and an electric field of 0.875 kV/cm.

Relationship between morphology and viscosity of the main culture broth of Cephalosporium acremonium M25

  • Kim Jong Chae;Lim Jung Soo;Kim Jung Mo;Kim Chongyoup;Kim Seung Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.15-20
    • /
    • 2005
  • In this study, the relationship between morphology and viscosity of the main culture broth of Cephalosporium acremonium M25 was investigated in a 2.5 L bioreactor. The differentiation of C. acremonium M25 showed a complex pattern during the main culture. The morphological changes of C. acremonium M25 were related to the rheological properties of the culture broth and it was well agreed with the power law model. As a result of rheology study, it was found that rheological properties of the main culture broths of C. acremonium M25 in bioreactor were closely related to morphological changes. Also, fractal dimension fairly predicted morphological and rheological changes in the main culture broth.

Effects of Blend Ratio and Heat Treatment on the Properties of the Electrospun Poly(ethylene terephthlate) Nonwovens

  • Kim Kwan Woo;Lee Keun Hyung;Lee Bong Seok;Ho Yo Seung;Oh Seung Jin;Kim Hak Yong
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.121-126
    • /
    • 2005
  • Semicrystalline poly(ethylene terephthalate) (cPET)/amorphous poly(ethylene terephthalate) with isophthalic acid (aPET) blends with 100/0, 75/25, 50/50, 25/75, and 0/100 by weight ratios were dissolved in a mixture of trifluoroacetic acid (TFA)/methylene chloride (MC) (50/50, v/v) and electrospun via the electrospinning technique. Solution properties such as solution viscosity, surface tension and electric conductivity were determined. The solution viscosity slightly decreased as aPET content increased, while there was no difference in surface tension with respect to aPET composition. The characteristics of the electro spun cPET/aPET blend nonwovens were investigated in terms of their morphology, pore size and gas permeability. All these measurements were carried out before and after heat treatment for various blend weight ratios. The average diameter of the fibers decreased with increasing aPET composition due to the decrease in viscosity. Also, the morphology of the electrospun cPET/aPET blend nonwovens was changed by heat treatment. The pore size and pore size distribution varied greatly from a few nanometers to a few microns. The gas permeability after heat treatment was lower than that before heat treatment because of the change of the morphology.

Microstructure and Characteristic of Rheocast Al-6.2wt%Si Alloy (Al-6.2wt%Si합금의 리오캐스트 조직과 특성)

  • Lee, Jung-Il;Park, Ji-Ho;Lee, Ho-In;Kim, Moon-Il
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.438-446
    • /
    • 1994
  • The effect of various thermomechanical treatments on the structure and rheological behaviour of Al-6.2wt%Si alloy in its solidification range were investigated using a Searle type high temperature viscometer. During continuous cooling, the viscosity increases gradually with increasing fraction of solidified alloy, until a critical fraction of solidified alloy is reached above which the viscosity sharply increases. The viscosity of the slurry, at a given volume fraction wolid, decreased with increasing shear rate. The size and morphology of primary solid particles during stirring is influenced strongly by shear rates, cooling rates, volume fraction and stirring time of solid. Morphological changes during stirring as a function of solid volume fractions, shear rate and processing time were also reported. In this study, the size of primary solid particles in these alloys consistently increases and the it`s aspect ratio decrease with the increase in fraction solid and decrease in shear rate. Crystal morphology changes from rosette type to spheroid type with the increase in shear rate and solid fraction.

  • PDF

Preparation and Characterizations of Polymethylmethacrylate (PMMA)/Acrylate Rubber (ACM) Blend for Light Diffuser Applications

  • Lee, Byung Hwan;Chang, Young-Wook;Lim, Hyung Mi
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • Dynamically vulcanized PMMA/ACM (80 wt%/20 wt%) blend using DCP as a curing agent was prepared using internal mixer. The morphology, mechanical properties, optical properties, melt viscosity and die swell were characterized by using FE-SEM, tensile test, Izod impact test, dynamic mechanical analysis, ARES and capillary rheometer, respectively. The blends show a phase-separated morphology in which ACM are dispersed in PMMA matrix. Dynamically vulcanized blend exhibits higher mechanical properties, higher melt viscosity, and die swell as compared to simple blend. And, the dynamically vulcanized blend showed total transmittance of more than 75% and haze of higher than 90%, which enable it to find potential applications to fabricate an optical diffuser by extrusion process.

Study on the Morphology Evolution of PS/HDPE Blend During Uniaxial Elongational Flow (일축신장흐름에서의 PS/HDPE Blend의 모폴로지 변화에 관한 연구)

  • Hong, Jung-Sook;Son, Jung-Wu;Lee, Seung-Jae;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2001.06a
    • /
    • pp.11-14
    • /
    • 2001
  • Our study have aimed to identify the deformation and breakup mechanism of minor phase in polymer blends under uniaxial enlongational flow. Experimentally, we measured the transient elongational viscosity of PS/HDPE blends using the uniaxial elongational rheometer at two temperatures. And we observed the evolution of blend morphology with elongation time. Morphological change was observed by quenching the specimen after deformation. If the viscosity variation of PS was compared with that of HDPE at each temperature, PS showed larger temperature dependence than HDPE. At 155$^{\circ}C$, the dispersed phase of larger size were easily affected by affine deformation. The initial spherical shape changed to flat ellipsoid at first, then flat ellipsoid to bulbous shape, and bulbous to thin thread and its satellites. But dispersed phase of smaller size showed the change from sphere to ellipsoid. At 175$^{\circ}C$, the dispersed phase were mostly deformed from spherical shape to ellipsoid. As a result, the morphological change of dispersed phase in elongational deformation is affected by chain flexibility and viscosity ratio. We need to further study to make sure the mechanism of elongation of viscoelastic polymer blends.

  • PDF

Rheology and morphology of concentrated immiscible polymer blends

  • Mewis, Jan;Jansseune, Thomas;Moldenaers, Paula
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.4
    • /
    • pp.189-196
    • /
    • 2001
  • The phase morphology is an important factor in the rheology of immiscible polymer blends. Through its size and shape, the interface between the two phases determines how the components and the interface itself will contribute to the global stresses. Rheological measurements have been used successfully in the past to probe the morphological changes in model blends, particularly for dilute systems. For more concentrated blends only a limited amount of systematic rheological data is available. Here, viscosities and first normal stress differences are presented for a system with nearly Newtonian components, the whole concentration range is covered. The constituent polymers are PDMS and PIB, their viscosity ratio can be changed by varying the temperature. The data reported here have been obtained at 287 K where the viscosities of the two components are identical. By means of relaxation experiments the measured stresses are decomposed into component and interfacial contributions. The concentration dependence is quite different for the two types of contribution. Except for the component contributions to the shear stresses there is no clear indication of the phase inversion. Plotting either the interfacial shear or normal stresses as a function of composition produces in some cases two maxima. The relaxation times of these stresses display a similar concentration dependence. Although the components have the same viscosity, the stress-component curves are not symmetrical with respect to the 50/50 blend. A slight elasticity of one of the components seems to be the cause of this effect. The data for the more concentrated blends at higher shear rates are associated with a fibrillar morphology.

  • PDF

Effect of nonionic surfactants on the electrorheology of emulsions

  • Ha, Jong-Wook;Moon, Jung-Hyuk;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.241-246
    • /
    • 1999
  • In this study, we consider the effect of nonionic surfactants on the rheological responses of emulsion systems under the action of a uniform do electric field. The model emulsions consist of a less conducting dispersed phase and a more conducting continuous phase. When the shear flow is weak, the positive viscosity effect is produced due to the formation of chain-like morphology. The nonionic surfactants used here generate two distinctively different effects. Specifically, first, the steric hindrance induced by the surfactant molecules renders the structure unstable, and thereby reduces the degree of positive viscosity effect. Secondly, the presence of surfactant molecules also prevents the rotation of the dispersed droplets by anchoring across the interface or by decreasing the size of dispersed phase. The second effect suppresses the negative viscosity effect.

  • PDF

Evolution of phase morphology and in-situ compatibilization of polymer blends during ultrasound-assisted melt mixing

  • Kim, Hyungsu;Ryu, Joung-Gul;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.121-128
    • /
    • 2002
  • A series of thermoplastic polymers and their blends were melt-processed with high intensity ultrasonic wave in an intensive mixer. For the effective transfer of ultrasonic energy, an experimental apparatus was specially designed so that polymer melt can directly contact with ultrasonic horn. It was observed that significant variations in the rheological properties of polymers occur due to the unique action of ultrasonic wave without any aid of chemical additives. It was also found that the direct sonication on immiscible polymer blends in melt state reduces the domain sizes considerably and stabilizes the phase morphology of the blends. The degree of compatibilization was strongly affected by viscosity ratio of the components and the morphology was stable after annealing in properly compatibilized blends. It is suggested that ultrasound assisted melt mixing can lead to in-situ copolymer formation between the components and consequently provide an effective route to compatibilize immiscible polymer blends.

Blends of semi-rigid substituted poly(p-phenylene) with BPA-polycarbonate

  • Dijkstra Dirk J.;Karbach Alexander;Malkovich Nick
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.364-364
    • /
    • 2006
  • The rheological properties of Parmax 1200, a new semi-flexible substituted polyphenylene, were investigated. The reported high stiffness of the material was confirmed. The rheological measurements proved that, despite the very high stiffness of the molecules, Parmax showed shear thinning and that, although the viscosity is very high and the melt is highly elastic, the polymer can be extruded in the melt. A worm-like morphology was detected in AFM and TEM. This morphology could explain the reported mechanical and rheological behaviour. The compatibility with flexible chain polymers (e.g. polycarbonate) could also be explained by the worm-like morphology.

  • PDF