The purpose of this study was to analyze user reviews of running applications using text mining. This study used user reviews of Nike Run Club and Runkeeper in the Google Play Store using the selenium package of python3 as the analysis data, and separated the morphemes by leaving only Korean nouns through the OKT analyzer. After morpheme separation, we created a rankNL dictionary to remove stopwords. To analyze the data, we used TF, TF-IDF and LDA topic modeling in text mining. The results of this study are as follows. First, the keywords 'record', 'app', and 'workout' were identified as the top keywords in the user reviews of Nike Run Club and Runkeeper applications, and there were differences in the rankings of TF and TF-IDF. Second, the LDA topic modeling of Nike Run Club identified the topics of 'basic items', 'additional features', 'errors', and 'location-based data', and the topics of Runkeeper identified the topics of 'errors', 'voice function', 'running data', 'benefits', and 'motivation'. Based on the results, it is recommended that errors and improvements should be made to contribute to the competitiveness of the application.
Personalized smart devices such as smartphones and smart pads are widely used. Unlike traditional feature phones, theses smart devices allow users to choose a variety of functions, which support not only daily experiences but also business operations. Actually, there exist a huge number of applications accessible by smart device users in online and mobile application markets. Users can choose apps that fit their own tastes and needs, which is impossible for conventional phone users. With the increase in app demand, the tastes and needs of app users are becoming more diverse. To meet these requirements, numerous apps with diverse functions are being released on the market, which leads to fierce competition. Unlike offline markets, online markets have a limitation in that purchasing decisions should be made without experiencing the items. Therefore, online customers rely more on item-related information that can be seen on the item page in which online markets commonly provide details about each item. Customers can feel confident about the quality of an item through the online information and decide whether to purchase it. The same is true of online app markets. To win the sales competition against other apps that perform similar functions, app developers need to focus on writing app descriptions to attract the attention of customers. If we can measure the effect of app descriptions on sales without regard to the app's price and quality, app descriptions that facilitate the sale of apps can be identified. This study intends to provide such a quantitative result for app developers who want to promote the sales of their apps. For this purpose, we collected app details including the descriptions written in Korean from one of the largest app markets in Korea, and then extracted keywords from the descriptions. Next, the impact of the keywords on sales performance was measured through our econometric model. Through this analysis, we were able to analyze the impact of each keyword itself, apart from that of the design or quality. The keywords, comprised of the attribute and evaluation of each app, are extracted by a morpheme analyzer. Our model with the keywords as its input variables was established to analyze their impact on sales performance. A regression analysis was conducted for each category in which apps are included. This analysis was required because we found the keywords, which are emphasized in app descriptions, different category-by-category. The analysis conducted not only for free apps but also for paid apps showed which keywords have more impact on sales performance for each type of app. In the analysis of paid apps in the education category, keywords such as 'search+easy' and 'words+abundant' showed higher effectiveness. In the same category, free apps whose keywords emphasize the quality of apps showed higher sales performance. One interesting fact is that keywords describing not only the app but also the need for the app have asignificant impact. Language learning apps, regardless of whether they are sold free or paid, showed higher sales performance by including the keywords 'foreign language study+important'. This result shows that motivation for the purchase affected sales. While item reviews are widely researched in online markets, item descriptions are not very actively studied. In the case of the mobile app markets, newly introduced apps may not have many item reviews because of the low quantity sold. In such cases, item descriptions can be regarded more important when customers make a decision about purchasing items. This study is the first trial to quantitatively analyze the relationship between an item description and its impact on sales performance. The results show that our research framework successfully provides a list of the most effective sales key terms with the estimates of their effectiveness. Although this study is performed for a specified type of item (i.e., mobile apps), our model can be applied to almost all of the items traded in online markets.
Choi, Hyunseung;Kim, Mintae;Kim, Wooju;Shin, Dongwook;Lee, Yong Hun
Journal of Intelligence and Information Systems
/
v.24
no.4
/
pp.111-136
/
2018
In this paper, we propose a methodology to extract answer information about queries from various types of unstructured documents collected from multi-sources existing on web in order to expand knowledge base. The proposed methodology is divided into the following steps. 1) Collect relevant documents from Wikipedia, Naver encyclopedia, and Naver news sources for "subject-predicate" separated queries and classify the proper documents. 2) Determine whether the sentence is suitable for extracting information and derive the confidence. 3) Based on the predicate feature, extract the information in the proper sentence and derive the overall confidence of the information extraction result. In order to evaluate the performance of the information extraction system, we selected 400 queries from the artificial intelligence speaker of SK-Telecom. Compared with the baseline model, it is confirmed that it shows higher performance index than the existing model. The contribution of this study is that we develop a sequence tagging model based on bi-directional LSTM-CRF using the predicate feature of the query, with this we developed a robust model that can maintain high recall performance even in various types of unstructured documents collected from multiple sources. The problem of information extraction for knowledge base extension should take into account heterogeneous characteristics of source-specific document types. The proposed methodology proved to extract information effectively from various types of unstructured documents compared to the baseline model. There is a limitation in previous research that the performance is poor when extracting information about the document type that is different from the training data. In addition, this study can prevent unnecessary information extraction attempts from the documents that do not include the answer information through the process for predicting the suitability of information extraction of documents and sentences before the information extraction step. It is meaningful that we provided a method that precision performance can be maintained even in actual web environment. The information extraction problem for the knowledge base expansion has the characteristic that it can not guarantee whether the document includes the correct answer because it is aimed at the unstructured document existing in the real web. When the question answering is performed on a real web, previous machine reading comprehension studies has a limitation that it shows a low level of precision because it frequently attempts to extract an answer even in a document in which there is no correct answer. The policy that predicts the suitability of document and sentence information extraction is meaningful in that it contributes to maintaining the performance of information extraction even in real web environment. The limitations of this study and future research directions are as follows. First, it is a problem related to data preprocessing. In this study, the unit of knowledge extraction is classified through the morphological analysis based on the open source Konlpy python package, and the information extraction result can be improperly performed because morphological analysis is not performed properly. To enhance the performance of information extraction results, it is necessary to develop an advanced morpheme analyzer. Second, it is a problem of entity ambiguity. The information extraction system of this study can not distinguish the same name that has different intention. If several people with the same name appear in the news, the system may not extract information about the intended query. In future research, it is necessary to take measures to identify the person with the same name. Third, it is a problem of evaluation query data. In this study, we selected 400 of user queries collected from SK Telecom 's interactive artificial intelligent speaker to evaluate the performance of the information extraction system. n this study, we developed evaluation data set using 800 documents (400 questions * 7 articles per question (1 Wikipedia, 3 Naver encyclopedia, 3 Naver news) by judging whether a correct answer is included or not. To ensure the external validity of the study, it is desirable to use more queries to determine the performance of the system. This is a costly activity that must be done manually. Future research needs to evaluate the system for more queries. It is also necessary to develop a Korean benchmark data set of information extraction system for queries from multi-source web documents to build an environment that can evaluate the results more objectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.