• Title/Summary/Keyword: mooring

Search Result 619, Processing Time 0.03 seconds

Numerical simulations of a horizontal axis water turbine designed for underwater mooring platforms

  • Tian, Wenlong;Song, Baowei;VanZwieten, James H.;Pyakurel, Parakram;Li, Yanjun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 2016
  • In order to extend the operational life of Underwater Moored Platforms (UMPs), a horizontal axis water turbine is designed to supply energy for the UMPs. The turbine, equipped with controllable blades, can be opened to generate power and charge the UMPs in moored state. Three-dimensional Computational Fluid Dynamics (CFD) simulations are performed to study the characteristics of power, thrust and the wake of the turbine. Particularly, the effect of the installation position of the turbine is considered. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS) equations and the shear stress transport ${\kappa}-{\omega}$ turbulent model is utilized. The numerical method is validated using existing experimental data. The simulation results show that this turbine has a maximum power coefficient of 0.327 when the turbine is installed near the tail of the UMP. The flow structure near the blade and in the wake are also discussed.

A study on the Automatic ocean wave observation buoy system (해양자동관측용 해상 부이식 파고 시스템에 대한 연구)

  • Lee, Won-Boo;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.268-273
    • /
    • 2011
  • Withstanding the continuous treat from the typhoon and nasty weather from ocean, the development of the real time monitoring buoy such as ocean wave related monitoring buoy system becomes essential. In this research, the development of the ocean wave monitoring buoy system had been done domestically. The development including the data real-time monitoring (wind, temperature and pressure) added in the buoy, buoy mooring and real-time data communication system. The developed wave monitoring buoy system (drift type, wave direction and wave height type) is expected to meet the demands.

Capacity of Horizontally Loaded Suction Anchor Installed in Silty Sand (세립 사질토 지반에 설치된 석션 앵커의 수평 지지력)

  • Kim, Surin;Choo, Yun Wook;Kim, Dong-Soo;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • A suction anchor is one of the most popular anchors for deepsea floating systems. An anchor used for catenary mooring is predominantly under a horizontal load. In this study, the behavior of a suction anchor installed in cohesionless soil was investigated when the anchor was mainly subjected to a horizontal load induced by a catenary line. In order to study the behavior of the suction anchor, 3D FEM analysis models were developed and analyzed. Depending on the location of the load (padeye), the ultimate horizontal load was monitored. The distributions of the reaction forces around the anchor induced by the seabed were analyzed using the circumferential stress to understand the behavior of the suction anchor under a horizontal load.

Study on Ice Parameters Affecting DP Performance of FPSO in Arctic Ocean (극지용 FPSO의 DP 성능에 영향을 미치는 빙 파라미터 분석에 관한 연구)

  • Choi, Sol-Mi;Lee, Seung-Jae;Han, Solyoung;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.43-50
    • /
    • 2018
  • Recently, various efforts have been made to develop oil and gas in the Arctic Ocean. It is very important to consider the load caused by ice in designing floating structures in the area. The magnitude of the ice load and its impact on a structure should be considered. In this paper, we analyze ice parameters affecting the DP performance of FPSO with a DP-assisted mooring system. Several ice characteristics are selected, and the resulting ice load is calculated using GEM software. Numerous simulations are conducted while changing the values of the parameters, and DP capability plots are generated to visualize the effects of changing these parameters. It is shown that the ice drift speed and thickness are the major properties to be considered in DP system design. The limitations of the analysis and future work are discussed in the conclusion.

Experimental Study on Floating LNG Bunkering Terminal for Assessment of Loading and Offloading Performance (FLBT의 적하역 안정성 평가를 위한 실험적 연구)

  • Jung, Dong-Woo;Kim, Yun-Ho;Cho, Seok-Kyu;Jung, Dong-Ho;Sung, Hong-Gun;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • In this study, the operability of an FLBT (floating LNG bunkering terminal) was evaluated experimentally. Model tests were conducted in the KRISO (Korea Research Institute of Ships and Ocean Engineering) ocean engineering basin. An FLBT, an LNG carrier, and two LNG bunkering shuttles were moored side by side with mooring ropes and fenders. Two white-noise wave cases, one irregular wave case, and various regular wave cases were generated. The relative local motions between each LNG loading arm and its corresponding manifold in the initial design configuration were calculated from measured 6-DOF motions at the center of gravity of each of the four vessels. Furthermore, the locations of the LNG loading arms and manifolds were varied to minimize the relative local motions.

Characteristic of In Situ Suspended Particulate Matter at the Gwangyang bay Using LISST-100 and ADCP (LISST-100과 ADCP를 이용한 광양만 현장 부유입자물질 특성 연구)

  • Lee, Byoung-Kwan;Kim, Seok-Yun
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1299-1307
    • /
    • 2009
  • In order to measure in-situ suspended particle size, volume concentration of suspended particulate matter and current speed, mooring observation was performed at the Gwangyang Bay by using of an optical instrument, 'LISST-100' and an acoustic instrument, 'ADV'(St. S1). And the sediment flux was obtained based on the concentration of suspended particulate matter and current speeds measured at three lines of Gwangyang Bay during ebb and flood tide of August 2006. To investigate the spatial variation of suspended particulate matter, profiling observations were measured difference echo intensity and beam attenuation coefficient by using of ADCP and Transmissometer (Line A, B, C). The suspended sediment flux rate at the mouth of Gwangyang Bay was observed to be higher during asymmetrical than symmetrical of current speeds. The flux of suspended particulate matter concentration and current speeds were transported to southeastern direction of surface layer and northwestern direction of bottom layer at the western area at line A of Gwangyang Bay. Small suspended particles have been found to increase attenuation and transmission more efficiently than similar large particles using acoustic intensity (ADV/ADCP) or optical transmit coefficient (LISST-100/Transmissometer). The application and problems as using optical or acoustic instruments will be detected for use in time varying calibrations to account for non-negligible changes in complex environments in situ particle dynamics are poorly understood.

A comparison of coupled and uncoupled dynamic analysis for the flexible riser in shallow water

  • Jo, Chul-Hee;Kim, Do-Youb;Hwang, Su-Jin;Rho, Yu-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.195-201
    • /
    • 2014
  • Flexible risers have been used extensively in recent years for floating and early production systems. Such risers offer the advantage of having inherent heave compliance in their catenary thereby greatly reducing the complexity of the riser-to-rig and riser-to subsea interfaces. Another advantage with flexible risers is their greater reliability. Concerns about fatigue life, gas permeation and pigging of lines have been overcome by extensive experience with these risers in production applications. In this paper, flexible riser analysis results were compared through coupled and uncoupled dynamic analyses methods. A time domain coupled analysis capability has been developed to model the dynamic responses of an integrated floating system incorporating the interactions between vessel, moorings and risers in a marine environment. For this study, SPM (Single Point Mooring) system for an FSU in shallow water was considered. This optimization model was integrated with a time-domain global motion analysis to assess both stability and design constraints of the flexible riser system.

Development of a Time-selective Self-triggering Water Sampler and Its Application to In-situ Calibration of a Turbidity Sensor

  • Jin, Jae-Youll;Hwang, Keun-Choon;Park, Jin-Soon;Yum, Ki-Dai;Oh, Jae-Kyung
    • Journal of the korean society of oceanography
    • /
    • v.34 no.4
    • /
    • pp.200-206
    • /
    • 1999
  • Seawater sampling is the primary task for the study of the marine environmental parameters that require shipboard or laboratory experiments for their analyses, and is also required for the calibration of some instruments for in situ measurement. A new automatic bottle (AUTTLE) is developed for seawater sampling at any desired time and water depth by self-triggering. Both any type of single or assembled mooring for 15 days and manual actuation by using a remote messenger as existing instantaneous single point water samplers are possible. Its sampling capacity and the resolution of time setting are 2 liters and 1 second, respectively. The result of a field experiment with an optical backscattering sensor (OBS) and a total of 14 AUTTLES for the in situ calibration of the OBS shows that the AUTTLE must improve our understanding on the behavior of the sand/mud mixtures in the environments with high waves and strong tides. The AUTTLE will serve as a valuable instrument in the various fields of oceanography, especially where synchronized seawater sampling at several sites is required and/or the information in storm period is important.

  • PDF

Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD

  • Lee, Hsien Hua;Juang, H.H.
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.71-104
    • /
    • 2012
  • In this research, a typical tension-leg type of floating platform incorporated with an innovative concept of underwater tuned liquid column damper system (UWTLCD) is studied. The purpose of this study is to improve the structural safety by means of mitigating the wave induced vibrations and stresses on the offshore floating Tension Leg Platform (TLP) system. Based on some encouraging results from a previous study, where a Tuned Liquid Column Damper (TLCD) system was employed in a floating platform system to reduce the vibration of the main structure, in this study, the traditional TLCD system was modified and tested. Firstly, the orifice-tube was replaced with a smaller horizontal tube and secondly, the TLCD system was combined into the pontoon system under the platform. The modification creates a multipurpose pontoon system associated with vibration mitigation function. On the other hand, the UWTLCD that is installed underwater instead would not occupy any additional space on the platform and yet provide buoyancy to the system. Experimental tests were performed for the mitigation effect and parameters besides the wave conditions, such as pontoon draught and liquid-length in the TLCD were taken into account in the test. It is found that the accurately tuned UWTLCD system could effectively reduce the dynamic response of the offshore platform system in terms of both the vibration amplitude and tensile forces measured in the mooring tethers.

Analytical study of the failure mode and pullout capacity of suction anchors in clay

  • Liu, Haixiao;Wang, Chen;Zhao, Yanbing
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.79-95
    • /
    • 2013
  • Suction anchors are widely adopted in mooring systems. However there are still challenges in predicting the failure mode and ultimate pullout capacity of the anchor. Previously published methods for predicting the inclined pullout capacity of suction anchors are mainly based on experimental data or the FEM analysis. In the present work, an analytical method that is capable of predicting the failure mode and ultimate pullout capacity of the suction anchor in clay under inclined loading is developed. This method is based on a rational mechanical model for suction anchors and the knowledge of the mechanism that the anchor fails in seabed soils. In order to examine the analytical model, the failure angle and pullout capacity of suction anchors from FEM simulation, numerical solution and laboratory tests in uniform and linear cohesive soils are employed to compare with the theoretical predictions and the agreement is satisfactory. An analytical method that can evaluate the optimal position of the attachment point is also proposed in the present study. The present work proves that the failure mode and pullout capacity of suction anchors can be reasonably determined by the developed analytical method.