• Title/Summary/Keyword: monte-carlo simulation

Search Result 2,903, Processing Time 0.029 seconds

Demonstration of the Effectiveness of Monte Carlo-Based Data Sets with the Simplified Approach for Shielding Design of a Laboratory with the Therapeutic Level Proton Beam

  • Lai, Bo-Lun;Chang, Szu-Li;Sheu, Rong-Jiun
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Background: There are several proton therapy facilities in operation or planned in Taiwan, and these facilities are anticipated to not only treat cancer but also provide beam services to the industry or academia. The simplified approach based on the Monte Carlo-based data sets (source terms and attenuation lengths) with the point-source line-of-sight approximation is friendly in the design stage of the proton therapy facilities because it is intuitive and easy to use. The purpose of this study is to expand the Monte Carlo-based data sets to allow the simplified approach to cover the application of proton beams more widely. Materials and Methods: In this work, the MCNP6 Monte Carlo code was used in three simulations to achieve the purpose, including the neutron yield calculation, Monte Carlo-based data sets generation, and dose assessment in simple cases to demonstrate the effectiveness of the generated data sets. Results and Discussion: The consistent comparison of the simplified approach and Monte Carlo simulation results show the effectiveness and advantage of applying the data set to a quick shielding design and conservative dose assessment for proton therapy facilities. Conclusion: This study has expanded the existing Monte Carlo-based data set to allow the simplified approach method to be used for dose assessment or shielding design for beam services in proton therapy facilities. It should be noted that the default model of the MCNP6 is no longer the Bertini model but the CEM (cascade-exciton model), therefore, the results of the simplified approach will be more conservative when it was used to do the double confirmation of the final shielding design.

Evaluation of Levee Reliability by Applying Monte Carlo Simulation (Monte Carlo 기법에 의한 하천제방의 안정성 평가)

  • Jeon, Min Woo;Kim, Ji Sung;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.501-509
    • /
    • 2006
  • The safety of levee that depends on the river flood elevation has been regarded as very important keys to build up various flood prevention systems. However, deterministic methods for computation of water surface profile cannot reflect the effect of possible inaccuracies in the input parameters. The purpose of this study is to develop a methodology of uncertainty computation of design flood level based on steady flow analysis and Monte Carlo simulation. This study addresses the uncertainty of water surface elevation by Manning's coefficients, design discharges, river cross sections and boundary condition. Monte Carlo simulation with the variations of these parameters is performed to quantify the variations of water surface elevations in a river. The proposed model has been applied to the Kumho-river. The reliability analysis was performed within 38.5 km (95 sections) reach considered the variations of the above-mentioned parameters. Overtopping risks were evaluated by comparing the elevations of the flood condition with the those of the levees. The results show that there is a necessity which will raise the levee elevation between 1 cm and 56 cm at 7 sections. The model can be used for preparing flood risk maps, flood forecasting systems and establishing flood disaster mitigation plans as well as complement of conventional levee design.

Asymptotic Comparison of Latin Hypercube Sampling and Its Stratified Version

  • Lee, Jooho
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.135-150
    • /
    • 1999
  • Latin hypercube sampling(LHS) introduced by McKay et al. (1979) is a widely used method for Monte Carlo integration. Stratified Latin hypercube sampling(SLHS) proposed by Choi and Lee(1993) improves LHS by combining it with stratified sampling. In this article it is shown that SLHS yields an asymptotically more accurate than both stratified sampling and LHS.

  • PDF

Reliability Analysis of Open Cell Caisson Breakwater Against Circular Slip Failure (무공케이슨 방파제의 원호활동에 대한 신뢰성 분석)

  • Kim, Sunghwan;Huh, Jungwon;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.193-204
    • /
    • 2019
  • Reliability analyses of sixteen domestic design cases of open cell caisson breakwaters against circular sliding failure were conducted in this study. For the reliability analyses, uncertainties of parameters of soils, mound, and concrete cap were assessed. Bishop simplified method was used to obtain load and resistance of open cell caisson breakwater for randomly generated open cell caisson breakwater. Sufficient number of Monte Carlo simulations were conducted for randomly generated open cell caisson breakwaters, and statistical analysis was conducted on loads and resistances collected from the large number of Monte Carlo simulations. Probability of failure produced from Monte Carlo simulation has a nonconvergence issue for very low probability of failure; therefore, First-Order Reliability Method (FORM) was conducted using the statistical characteristics of loads and resistances of open cell caisson breakwaters. In addition, effects of safety factor, uncertainties of load and resistance, and correlation between load and resistance on reliability of open cell caisson breakwaters against circular sliding failure were examined.

Evaluation of Target Failure Level on Sliding Mode of Vertical Breakwaters using Safety Factors (안전율을 이용한 직립 방파제의 활동에 대한 목표파괴수준 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2010
  • A Monte-Carlo simulation method is proposed which can evaluate the target failure/safety levels on any failure modes of harbor structures as a function of central safety factor. Unlike the calibration method based on the average safety level of conventional design criteria, the target failure/safety level can be directly evaluated by only using central safety factors of the harbor structures which have been designed by safety factor method during the past several decade years. Several mathematical relationships are represented to straightforwardly connect the conventional safety factor design method with reliability-based design method. Even though limited data have been used in applying Monte-Carlo simulation method to sliding failure mode of the vertical breakwaters, it is found that target reliability indices evaluated by the suggested method in this paper is satisfactorily agreement with new criteria of reliability index of Japan.

Turbomolecular Pump 내 Rotor-Stator의 형상 변화에 따른 유동의 수치적 해석

  • Kim, In-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.98-98
    • /
    • 2012
  • 최고진공도 10-10 mbar, 배기속도 2500 L/s를 구현할 대용량 복합 분자펌프(TMP) 설계를 위한 3차원 유동해석을 실시하였다. 진공도가 10-5 mbar 이상이 되는 고진공도에서는 Knudsen 수가 102~107에 이르러 분자간 충돌을 거의 무시할 수 있게 되며, 이때의 유체해석 방법으로서는 통상 희박기체 해석법으로 많이 쓰이는 Direct Simulation Monte Carlo (DSMC) 방법이나 Continuum fluid에 대한 Navier-Stokes 해석보다, 충돌이 없는 분자의 자유운동을 모사하는 Monte Carlo 방법이 더 적합할 수 있다. 본 연구에서는 다단계 rotor와 stator로 구성되는 복합분자 내 유동장에 Monte Carlo 해석법을 적용하여 유동해석을 실시하였다. 해석 방법의 타당성을 확인하기 위해 동일한 형상에 대해 Navier-Stokes 해석과 DSMC 해석을 병행하였다. 각각의 수치적 해석에서 공통적으로, TMP의 성능에 지배적인 영향을 미치는 설계변수는 rotor-stator의 날개각임이 확인되었고, 이 설계변수들의 최적값을 다양한 3차원 유동해석을 통해 도출하였다. 해석결과는 펌프설계에 적용되어 펌프 성능시험결과를 통해 확증된다.

  • PDF

A Study for Recent Development of Generalized Linear Mixed Model (일반화된 선형 혼합 모형(GENERALIZED LINEAR MIXED MODEL: GLMM)에 관한 최근의 연구 동향)

  • 이준영
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.541-562
    • /
    • 2000
  • The generalized linear mixed model framework is for handling count-type categorical data as well as for clustered or overdispersed non-Gaussian data, or for non-linear model data. In this study, we review its general formulation and estimation methods, based on quasi-likelihood and Monte-Carlo techniques. The current research areas and topics for further development are also mentioned.

  • PDF