• Title/Summary/Keyword: monte carlo methods

Search Result 944, Processing Time 0.02 seconds

Fabrication of Backscatter Electron Cones for Radiation Therapy (산란전자선을 이용한 강내측방조사기구의 제작과 특성)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2001
  • Purpose : Irradiation cones by using backscatter electrons are made for the treatment of superficial small lesions of skin, oral cavity, and rectum where a significant dose gradient and maximum surface dose is desired. Methods and Materials : Backscatter electrons are produced from the primary electron beams from the linear accelerators. The design consists of a cylindrical cone that has a thick circular plate of high atomic number medium (Pb or Cu) attached to the distal end, and the plate can be adjusted the reflected angle. Primary electrons strike the metal plate perpendicularly and produce backscatter electrons that reflect through the lateral hole for treatment. Using film and a parallel plate ion chamber, backscatter electron dose characteristics are measured. Results : The depth dose characteristic of the backscatter electron is very similar to that of the hard x-ray beam that is commonly used for the intracavitary and superficial lesions. The basckscatter electron energy is nearly constant and effectively about 1.5 MeV from the clinical megavoltage beams. The backscatter electron dose rate of $35\~85\;cGy/min$ could be achieved from modern accelerators without any modification. and the depth in water of $50\%$ depth dose from backscatter electron located at 6mm for $45^{\circ}$ angled lead scatter. The beam flatness is dependent on the slit size and the depth of treatment, but is satisfactory to treat small lesions. Conclusions : The measured data for backscatter electron energy, depth dose flatness dose rate and absolute dose indicates that the backscatter electrons are suitable for clinical use.

  • PDF

Monitoring and Risk Assessment of Heavy Metals in Edible Mushrooms (국내 유통 버섯 중 중금속 함량 조사 및 위해성 평가)

  • Kim, Ji-Young;Yoo, Ji-Hyock;Lee, Ji-Ho;Kim, Min-Ji;Kang, Dae-Won;Ko, Hyeon-Seok;Hong, Su-Myeong;Im, Geon-Jae;Kim, Doo-Ho;Jung, Goo-Bok;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • BACKGROUND: Many edible mushrooms are known to accumulate high levels of heavy metals. This research was focused on health risk assessment to investigate the mushrooms in Korea, arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) contaminations in edible mushrooms in cultivated areas were investigated, and health risk was assessed through dietary intake of mushrooms. METHODS AND RESULTS: The heavy metals in mushrooms were analyzed by ICP/MS after acid digestion. Probabilistic health risk were estimated by Monte-Carlo simulation techniques. The average contents of As, Cd, Pb, and Hg were $0.035{\pm}0.042$ mg/kg, $0.017{\pm}0.020$ mg/kg, $0.043{\pm}0.013$ mg/kg, and $0.004{\pm}0.004$ mg/kg, respectively. The results showed that contents of Cd and Pb did not exceed maximum residual levels established by European Uion regulation (Cd 0.20 mg/kg and Pb 0.30 mg/kg). For health risk assessment, estimated intakes in all age populations did not exceed the provisional tolerable daily intake of As and Hg, provisional tolerable monthly intake of Cd, provisional tolerable weekly intake of Pb. The Hazard Index (HI) were ranged from $0.03{\times}10^{-4}{\sim}0.01{\times}10^{-3}$ for As, $0.02{\times}10^{-3}{\sim}0.81{\times}10^{-3}$ for Cd, $0.06{\times}10^{-3}{\sim}0.38{\times}10^{-3}$ for Pb, and $0.08{\times}10^{-4}{\sim}0.14{\times}10^{-3}$ for Hg at general population. CONCLUSION: The HI from the ratio analysis between daily exposure and safety level values was less than 1.0. This results demonstrated that human exposure to heavy metals through dietary intake of mushrooms might not cause adverse effect.

Valuation of Mining Investment Projects by the Real Option Approach - A Case Study of Uzbekistan's Copper Mining Industry - (실물옵션평가방법에 의한 광산투자의 가치평가 -우즈베키스탄 구리광산업의 사례연구를 중심으로-)

  • Makhkamov, Mumm Sh.;Kim, Dong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1634-1647
    • /
    • 2007
  • "To invest or not to invest?" Most business leaders are frequently faced with this question on new and ongoing projects. The challenge lies in deciding what projects to choose, expand, contract, defer, or abandon. The project valuation tools used in this process are vital to making the right decisions. Traditional tools such as discounted cash flow (DCF)/net present value (NPV) assume a "fixed" path ahead, but real world projects face uncertainties, forcing us to change the path often. Comparing to other traditional valuation methods, the real options approach captures the flexibility inherent to investment decisions. The use of real options has gained wide acceptance among practitioners in a number of several industries during the last few decades. Even though the options are present in all types of business decisions, it is still not considered as a proper method of valuation in some industries. Mining has been comparably slow to adopt new valuation techniques over the years. The reason fur this is not entirely clear. One possible reason is the level and types of risks in mining. Not only are these risks high, but they are also more numerous and involve natural risks compared with other industries. That is why the purpose of this study is to deal with a more practical approach to project valuation, known as real options analysis in mining industry. This paper provides a case study approach to the copper mining industry using a real options analysis. It shows how companies can minimize investment risks, exercise flexibility in decision making and maximize returns.

  • PDF

The Study of Dose Change by Field Effect on Atomic Number of Shielding Materals in 6 MeV Electron Beam (6 MeV 전자선의 차폐물질 원자번호와 조사야 크기에 따른 선량변화 연구)

  • Lee, Seung Hoon;Kwak, Keun Tak;Park, Ju Kyeong;Gim, Yang Soo;Cha, Seok Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2013
  • Purpose: In this study, we analyzed how the dose change by field size effects on atomic number of shielding materials while using 6 MeV election beam. Materials and Methods: The parallel plate chamber is mounted in $25{\times}25cm^2$ the phantom such that the entrance window of the detector is flush with the phantom surface. phantom was covered laterally with aluminum, copper and lead which thickness have 5% of allowable transmission and then the doses were measured in field size $6{\times}6$, $10{\times}10$ and $20{\times}20cm^2$ respectively. 100 cGy was irradiated using 6 MeV electron beam and SSD (Source Surface Distance) was 100 cm with $10{\times}10cm^2$ field size. To calculate the photon flux, electron flux and Energy deposition produced after pass materals respectively, MCNPX code was used. Results: The results according to the various shielding materials which have 5% of allowable transmission are as in the following. Thickness change rate with field size of $6{\times}6cm^2$ and $20{\times}20cm^2$ that compared to the field size of $10{\times}10cm^2$ found to be +0.06% and -0.06% with aluminum, +0.13% and -0.1% with copper, -1.53% and +1.92% with lead respectively. Compare to the field size $10{\times}10cm^2$, energy deposition for $6{\times}6cm^2$ and $20{\times}20cm^2$ had -4.3% and +4.85% respectively without shielding material. With aluminum it had -0.87% and +6.93% respectively and with lead it had -4.16% and +5.57% respectively. When it comes to photon flux with $6{\times}6cm^2$ and $20{\times}20cm^2$ of field sizes the chance -8.95% and +15.92% without shielding material respectively, with aluminum the number -15.56% and +16.06% respectively and with copper the chance -12.27% and +15.53% respectively, with lead the number +12.36% and -19.81% respectively. In case of electron flux in the same condition, the number -3.92% and +4.55% respectively without shielding material respectively, with aluminum the number +0.59% and +6.87% respectively, with copper the number -1.59% and +3.86% respectively, with lead the chance -5.15% and +4.00% respectively. Conclusion: In this study, we found that the required thickness of the shielding materials got thinner with low atomic number substance as the irradiation field is increasing. On the other hand, with high atomic number substance the required thickness had increased. In addition, bremsstrahlung radiation have an influence on low atomic number materials and high atomic number materials are effected by scattered electrons.

  • PDF