• Title/Summary/Keyword: monte carlo method

Search Result 2,189, Processing Time 0.026 seconds

Analysis of Interference Impact of UWB System on WiBro System (UWB 시스템에 의한 WiBro 시스템에서의 간섭영향에 관한 연구)

  • Yoon Young-Keun;Hong Heon-Jin;Lee Il-Kyoo;Choi Ik-Guen;Kwak Kyung-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.814-819
    • /
    • 2006
  • This paper presents the impacts of Ultra Wide-Band(UWB) system applied in Indoor and Handhold communications using frequency band from 3.1 GHz to 10.6 GHz on Wireless Broad-band(WiBro) system based on Orthogonal Frequency Division Multiplexing(OFDM) using frequency of 2.3 GHz. The Minimum Coupling Loss(MCL) method for the case of single interference and Monte Carlo(MC) simulation for multiple interference considering practical scenario were used to evaluate the interference effects of UWB system on WiBro system. As a result, the minimum separation distance between single interferer and the victim receiver required 34.4 m and above to guarantee the co-existence. Also, the UWB transmitting PSD of around - 81 dBm / MHz below should be required to meet the minimum throughput loss of WiBro mobile station in case of multiple UWB interference.

Plume Behavior Study of Apollo Lunar Module Descent Engine Using Computational Fluid Dynamics (전산유체역학을 이용한 아폴로 달착륙선 하강엔진의 플룸 거동 연구)

  • Choi, Wook;Lee, Kyun Ho;Myong, Rho Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.766-774
    • /
    • 2017
  • When a plume flow exhausted from a lunar lander descent engine impinges on the lunar surface, regolith particles on the lunar surface will be dispersed due to a plume-surface interaction. If the dispersed particles collide with the lunar lander, some adverse effects such as a performance degradation can be caused. Thus, this study tried to predict the plume flow behaviors using the CFD methods. A nozzle inside region was analyzed by a continuum flow model based on the Navier-Stokes equations while the plume behaviors of the outside nozzle was performed by comparing and analyzing the individual results using the continuum flow model and the DSMC method. As a result, it was possible to establish an optimum procedure of the plume analysis for the lunar lander descent engine in the vacuum condition. In the future, it is expected to utilize the present results for the development of the Korean lunar lander.

Robust Design in Terms of Minimization of Sensitivity to Uncertainty and Its Application to Design of Micro Gyroscopes (불확실 변수에 대한 구배 최소화를 이용한 강건 최적 설계와 마이크로 자이로스코프에의 응용)

  • Han, Jeong-Sam;Gwak, Byeong-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1931-1942
    • /
    • 2002
  • In this paper a formulation of robust optimization is presented and illustrated by a design example of vibratory micro gyroscopes in order to reduce the effect of variations due to uncertainties in MEMS fabrication processes. For the vibratory micro gyroscope considered it is important to match the resonance frequencies of the vertical (sensing) and lateral (driving) modes as close as possible to attain a high sensing sensitivity. A deterministic optimization in which the difference of both the sensing and driving natural frequencies is minimized as an objective function results in highly enhanced performance but apt to be very sensitive to fabrication errors. The formulation proposed is to attain robustness of the performance by including the sensitivity of the response with respect to uncertain variables as a term of objective function to be minimized. This formulation is simple and practically applicable since no detail statistical information on fabrication errors is required. The geometric variables, beam width, length and thickness of vibratory micro gyroscopes are adopted as design variables and at the same time considered as uncertain variables because here occur the fabrication errors. A robustness test in terms of a percentage yield by using the Monte Carlo simulation has shown that the robust optimum produces twice more acceptable designs than the deterministic optimum. Improvement of robustness becomes bigger as the amount of fabrication errors is assumed larger. Considering that the magnitude of fabrication errors and uncertainties in a MEMS structure are comparatively large, the present method is illustrated to be a viable approach for a robust MEMS design.

Procedure for the Selection of Principal Components in Principal Components Regression (주성분회귀분석에서 주성분선정을 위한 새로운 방법)

  • Kim, Bu-Yong;Shin, Myung-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.967-975
    • /
    • 2010
  • Since the least squares estimation is not appropriate when multicollinearity exists among the regressors of the linear regression model, the principal components regression is used to deal with the multicollinearity problem. This article suggests a new procedure for the selection of suitable principal components. The procedure is based on the condition index instead of the eigenvalue. The principal components corresponding to the indices are removed from the model if any condition indices are larger than the upper limit of the cutoff value. On the other hand, the corresponding principal components are included if any condition indices are smaller than the lower limit. The forward inclusion method is employed to select proper principal components if any condition indices are between the upper limit and the lower limit. The limits are obtained from the linear model which is constructed on the basis of the conjoint analysis. The procedure is evaluated by Monte Carlo simulation in terms of the mean square error of estimator. The simulation results indicate that the proposed procedure is superior to the existing methods.

Overall Cell Data Rates Analysis for Heterogenous Network Under Adaptive Modulation (이종 네트워크에서 적응변조 사용시 주파수 공유에 따른 데이터 전송률 분석)

  • Kwon, Tae-Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.394-400
    • /
    • 2018
  • A heterogenous network is the one of key technologies for 5G, where one cell is divided into small cells in order to extend coverage and support high data rates. Divided cells aggravates the intercell interference problem as the cell edge increases. In order to avoid the intercell interference, it is the best to allocate the different spectrum for each cells. However, it also decreases the spectral efficiency. Therefore, the trade-off between the spectral efficiency gain and the signal quality loss by the interference should be considered for an efficient spectrum sharing in the heterogenous network. The adaptive modulation is the method to change the transmitted bit according to the channel quality, which is adopted as the standard in the most practical communication systems. It should be considered to applied the performance analysis into the practical systems. In this paper, the overall cell data rates is analyzed for the heterogenous network under the adaptive modulation. The Monte Carlo simulation results verify the correctness of the analysis.

A risk analysis for the determination of a tunnel support pattern (터널 지보패턴 결정을 위한 위험도 분석)

  • You, Kwang-Ho;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.241-250
    • /
    • 2003
  • Rock mass is very inhomogeneous in nature and data obtained by site investigations and tests are very limited. For this reason, many uncertainties are to be included in the process of constructing structures in rock mass. In the design of a tunnel, support pattern, advance rate, and excavation method, which are important design parameters, must be determined to be optimal. However, it is not easy to determine those parameters. Moreover if those parameters are determined incorrectly, unexpected risk occurs such as decrease in the stability of a tunnel or economic loss due to the excessive supports etc. In this study, how to determine an optimal support pattern and advance rate, which are the important tunnel design parameters, is introduced based on a risk analysis. It can be confirmed quantitatively that the more supported a tunnel is, the larger reliability index becomes and the more stable the tunnel becomes. Also an optimal support pattern and advance rate can be determined quantitatively by performing a risk analysis considering construction cost and the cost of loss which can be occurred due to the collapse of a tunnel.

  • PDF

Sensitivity analysis of the plastic hinge region in the wall pier of reinforced concrete bridges

  • Babaei, Ali;Mortezaei, Alireza;Salehian, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.675-687
    • /
    • 2019
  • As the bridges are an integral part of the transportation network, their function as one of the most important vital arteries during an earthquake is fundamental. In a design point of view, the bridges piers, and in particular the wall piers, are considered as effective structural elements in the seismic response of bridge structures due to their cantilever performance. Owing to reduced seismic load during design procedure, the response of these structural components should be ductile. This ductile behavior has a direct and decisive correlation to the development of plastic hinge region at the base of the wall pier. Several international seismic design codes and guidelines have suggested special detailing to assure ductile response in this region. In this paper, the parameters which affect the length of plastic hinge region in the reinforced concrete bridge with wall piers were examined and the sensitivity of these parameters was evaluated on the length of the plastic hinge region. Sensitivity analysis was accomplished by independently variable parameters with one standard deviation away from their means. For this aim, the Monte Carlo simulation, tornado diagram analysis, and first order second moment method were used to determine the uncertainties associated with analysis parameters. The results showed that, among the considered design variables, the aspect ratio of the pier wall (length to width ratio) and axial load level were the most important design parameters in the plastic hinge region, while the yield strength of transverse reinforcements had the least effect on determining the length of this region.

Reliability Prediction of Electronic Arm Fire Device Applying Sensitivity Analysis (민감도 해석을 적용한 전자식 점화안전장치의 신뢰도 추정)

  • Kim, Dong-seong;Jang, Seung-gyo;Lee, Hyo-Nam;Son, Young Kap
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.393-401
    • /
    • 2018
  • Reliability prediction of an electronic arm fire device(EAFD) was studied which is applied to prevent accidental ignition in a solid rocket motor. For predicting the reliability, the main components of the EAFD were first defined(Control unit, LEEFI, TBI) and the operating principle of each component was analyzed. Performance modeling of each part is established using selected input variables through system analysis. When complex analysis is required, we approximated it with polynomial equation using response surface method. Monte-Carlo simulation is applied to performance modeling to estimate the design reliability.

Correlation Between Mechanical Behavior and Electrical Resistance Change in Carbon Particle Dispersed Plastic Composite

  • Song, D.Y.;Takeda, N.;Kim, J.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.377-382
    • /
    • 2001
  • Mechanical behavior and electrical resistance change of CPDP (carbon particle dispersed plastic) composite consisting of epoxy resin and conductive carbon particle were investigated under monotonic loading and repeated loading-unloading. The electrical resistance almost linearly increased with increasing strain during loading and the residual electrical resistance was observed even after removing load. The value of the residual electrical resistance was dependent on the maximum strain under the applied stress. This result suggests that the estimation of maximum strain (i.e., damage) is possible by the measuring electrical resistance of composite. The behavior of electrical resistance change during and after loading was discussed on the basis of the results of microscopic deformation and fracture observation. Moreover, the relationship between the volume fraction of carbon particle and the electrical resistivity of CPDP was investigated in relation to the percolation theory. Simulation model of percolation structure was established by Monte Carlo method and the simulation result was compared to the experimental results. The electrical resistance change under applied loading was analyzed quantitatively using the percolation equation and a simple model for the critical volume fraction of carbon particle as a function of the mechanical stress. It was revealed that the prediction was in good agreement with the experimental result except in the region near the failure of material.

  • PDF

Power Test of Trend Analysis using Simulation Experiment (모의실험을 이용한 경향성 분석기법의 검정력 평가)

  • Ryu, Yongjun;Shin, Hongjoon;Kim, Sooyoung;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.219-227
    • /
    • 2013
  • Time series data including change, jump, trend and periodicity generally have nonstationarity. Especially, various methods have been proposed to identify the trend about hydrological time series data. However, among various methods, evaluation about capability of each trend test has not been done a lot. Even for the same data, each method may show the different result. In this study, the simulation was performed for identification about the changes in trend analysis according to the statistical characteristics and the capability in the trend analysis. For this purpose, power test for the trend analysis is conducted using Men-Kendall test, Hotelling-Pabst test, t test and Sen test according to the slope, sample size, standard deviation and significance level. As a result, t test has higher statistical power than the others, while Mann-Kendall, Hotelling-Pabst, and Sen tests were similar results.