• Title/Summary/Keyword: monotonic loading test

Search Result 176, Processing Time 0.027 seconds

Cyclic response and design procedure of a weak-axis cover-plate moment connection

  • Lu, Linfeng;Xu, Yinglu;Zheng, Huixiao;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.329-345
    • /
    • 2018
  • This paper systematically investigated the mechanical performance of the weak-axis cover-plate connection, including a beam end monotonic loading test and a column top cyclic loading test, and a series of parametric studies for exterior and interior joints under cyclic loading using a nonlinear finite element analysis program ABAQUS, focusing on the influences of the shape of top cover-plate, the length and thickness of the cover-plate, the thickness of the skin plate, and the steel material grade. Results showed that the strains at both edges of the beam flange were greater than the middle's, thus it is necessary to take some technical methods to ensure the construction quality of the beam flange groove weld. The plastic rotation of the exterior joint can satisfy the requirement of FEMA-267 (1995) of 0.03 rad, while only one side connection of interior joint satisfied ANSI/AISC 341-10 under the column top cyclic loading. Changing the shape or the thickness or the length of the cover-plate did not significantly affect the mechanical behaviors of frame joints no matter in exterior joints or interior joints. The length and thickness of the cover-plate recommended by FEMA 267 (1995) is also suitable to the weak-axis cover-plate joint. The minimum skin plate thickness and a design procedure for the weak-axis cover-plate connections were proposed finally.

Investigation of pipe shear connectors using push out test

  • Nasrollahi, Saeed;Maleki, Shervin;Shariati, Mahdi;Marto, Aminaton;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.537-543
    • /
    • 2018
  • Mechanical shear connectors are commonly used to transfer longitudinal shear forces across the steel-concrete interface in composite beams. Steel pipe as a new shear connector is proposed in this research and its performance to achieve composite strength is investigated. Experimental monotonic push-out tests were carried out for this connector. Then, a nonlinear finite element model of the push-out specimens is developed and verified against test results. Further, the finite element model is used to investigate the effects of pipe thickness, length and diameter on the shear strength of the connectors. The ultimate strengths of these connectors are reported and their respective failure modes are discussed. This paper comprises of the push-out tests of ten specimens on this shear connector in both the vertical and horizontal positions in different reinforced concretes. The results of experimental tests are given as load-deformation plots. It is concluded that the use of these connectors is very effective and economical in the medium shear demand range of 150-350 KN. The dominant failure modes observed were either failure of concrete block (crushing and splitting) or shear failure of pipe connector. It is shown that the horizontal pipe is not as effective as vertical pipe shear connector and is not recommended for practical use. It is shown that pipe connectors are more effective in transferring shear forces than channel and stud connectors. Moreover, based on the parametric study, a formula is presented to predict the pipe shear connectors' capacity.

Behavior of Concrete-Filled Square Steel Tubular Column-H Beam Connections with Reinforced bars (철근으로 보강한 콘크리트충전 각형강관 기둥-H형강보 접합부의 거동)

  • Yoo, Yeong Chan;Shin, Kyung Jae;Oh, Young Suk;Lee, Seung Joon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.377-390
    • /
    • 1997
  • The objective of this study is to investigate the structural behavior of concrete-filled steel tubular column to H-beam connections with reinforced bar. As a preliminary test, simple tensile test on the column to H-beam connections stiffened were conducted. The parameters of tensile test are the diameters of each rebars. The simple tensile test were conducted to 5 kinds of specimens. Estimating the load. displacement and strain for specimens, the result of tensile test were compared with the results of main test. On the basis of simple tensile test, tests are conducted to montonic and cyclic loading column to H-beam connections with the same diameters of rebars. Specimens of 5 are made for monotonic and cyclic loading test. In analysis, estimating the yielding strength and maximum strength of specimens on the basis of yield line theory, strength formula of beam-to column connections with concrete-filled steel tubular column was suggested.

  • PDF

Shear Strength-strain Behavior of Unsaturated Weathered Soil (SM) (화강풍화토(SM soil)의 불포화 전단거동 분석)

  • Jeong, Sang-Seom;Lee, Seong-Cheol;Jeong, Seung-Hwa
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.2
    • /
    • pp.5-13
    • /
    • 2022
  • The unsaturated behavior of sandy silt (SM soil) was investigated experimentally. Special attention was given to the stress-strain behavior of unsaturated weathered soil (SM) prior to failure and behavior at failure under monotonic loading. A sandy silt (SM) weathered soil containing a certain amount of fine contents distributed in Korea, was chosen to form samples with different densities of Dr=25%, 60%, and 75%. and matric suctions. The isotopically Consolidated Drain test (CD-test) was performed to maintain a constant matric suction during the shearing process. Based on the experimental results, it was qualitatively identified that the higher the relative density, the greater the virtual friction angle (ϕb) value and AEV (Air Entry Value) were induced. Also it is found that the internal friction angle (ϕ') is more or less constant. even if the matric suction is increased.

An Experimental Study on Failure Behavior of TP316 Stainless Steel Pipe with Local Wall Thinning and Cracking (국부 감육과 균열이 발생한 TP316 스테인리스강 배관의 파괴거동에 관한 실험적 연구)

  • Cheung, Jin Hwan;Kim, In Tae;Choi, Seock Jin;Choi, Hyung Suk;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.647-657
    • /
    • 2012
  • Although nuclear power plant piping system is designed conforming to design specifications, the piping systems are deteriorated with increase in service life. In this study, monotonic and cyclic loading tests were carried out on TP316 stainless steel pipe specimens, and the effect of local wall thinning and cracking on failure behavior was investigated. In the tests, 0%, 35% and 75% wall thinning and cracking of initial thickness were artificially introduced to inside elbow and straight pipe specimens, and internal pressures of 20MPa were applied to simulate real operation condition. From the test results, the effect of local wall thinning and cracking on failure mode, ultimate load, number of cycle and strain energy was presented, and maximum bending moment was compared with allowable bending moment calculated by ASME code.

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.

Cyclic behavior of extended end-plate connections with European steel shapes

  • Akgonen, Aliriza I.;Yorgun, Cavidan;Vatansever, Cuneyt
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1185-1201
    • /
    • 2015
  • The aim of this experimental research is to investigate the conformity of the four-bolt unstiffened moment end-plate connections consisting of European steel sections which do not meet the limitations specified for beam flange width and overall beam depth in ANSI/AISC 358-10 to the requirements of seismic application. However, the connections are satisfactory with the limitations required by Turkish Earthquake Code. For this purpose, four test specimens were designed and cyclic load was applied to three specimens while one was tested under monotonic loading to provide data for the calibration of the analytical models. The moment-rotation hysteresis loops and the failure modes for all test specimens are presented. A full three-dimensional finite element model is also developed for each test specimen for use to predict their behavior and to provide a tool for generating subsequent extensive parametric studies. The test results show that all specimens performed well in terms of rotation capacity and strength. Finite element models are found to be capable of approximating the cyclic behavior of the extended end-plate connection specimens.

Investigation on mechanical performance of flat steel plate-lightweight aggregate concrete hollow composite slab

  • Yang, Yong;Chen, Yang;Yang, Ye;Zeng, Susheng
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.329-340
    • /
    • 2019
  • An innovated type of the flat steel plate-lightweight aggregate concrete hollow composite slab was presented in this paper. This kind of the slab is composed of flat steel plate and the lightweight aggregate concrete slab, which were interfaced with a set of perfobond shear connectors (PBL shear connectors) with circular hollow structural sections (CHSS) and the shear stud connectors. Five specimens were tested under static monotonic loading. In the test, the influence of shear span/height ratios and arrangements of CHSS on bending capacity and flexural rigidity of the composite slabs were investigated. Based on the test results, the crack patterns, failure modes, the bending moment-curvature curves as well as the strains of the flat steel plate and the concrete were focused and analyzed. The test results showed that the flat steel plate was fully connected to the lightweight aggregate concrete slab and no obvious slippage was observed between the steel plate and the concrete, and the composite slabs performed well in terms of bending capacity, flexural rigidity and ductility. It was further shown that all of the specimens failed in bending failure mode regardless of the shear span/height ratios and the arrangement of CHSS. Moreover, the plane-section assumption was proved to be valid, and the calculated formulas for predicting the bending capacity and the flexural rigidity of the composite slabs were proposed on the basis of the experimental results.

Experimental and Numerical Study on Complex Multi-planar Welded Tubular Joints in Umbrella-Type Space Trusses with Long Overhangs

  • Jiao, Jinfeng;Ma, Xiao;Lei, Honggang;Chen, Y. Frank
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1525-1540
    • /
    • 2018
  • A test rig with multi-functional purposes was specifically designed and manufactured to study the behavior of multi-planar welded tubular joints subjected to multi-planar concurrent axial loading. An experimental investigation was conducted on full-scale welded tubular joints with each consisting of one chord and eight braces under monotonic loading conditions. Two pairs or four representative specimens (two specimens for each joint type) were tested, in which each pair was reinforced with two kinds of different internal stiffeners at the intersections between the chords using welded rectangular hollow steel sections (RHSSs) and the braces using rolled circular hollow steel sections (CHSSs) and welded RHSSs. The effects of different internal stiffeners at the chord-brace intersection on the load capacity of joints under concurrent multi-planar axial compression/tension are discussed. The test results of joint strengths, failure modes, and load-stress curves are presented. Finite element analyses were performed to verify the experimental results. The study results show that the two different joint types with the internal stiffeners at the chord-brace intersection under axial compression/tension significantly increase the corresponding ultimate strength to far exceed the usual design strength. The load carrying capacity of welded tubular joints decreases with a higher degree of the manufacturing imperfection in individual braces at the tubular joints. Furthermore, the interaction effect of the concurrent axial loading applied at the welded tubular joint on member stress is apparent.

The Critical Repeated Stress and Behavior of the Isotropic Normally Consolidated Clays Subjected to Repeated Loads. (반복하중을 받는 등방정친압밀점토의 거동 및 한계반복응력)

  • 김팔규;송전섭
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.43-52
    • /
    • 1988
  • The behavior of clays subjected to Repeated loading has been shown to be very different from the behavior under a single load application. Especially the behavior of pore water pressure is Qf considerable importance. The objective of this work is to experimentally study the stress-strain characteristics of clays, and this study includes the pore water pressure which is built up during the load repetition. For this study, the samples were consolidated isotropically in the triaxial cell during 24 hours, .and monotonic strain controlled triaxial test is carried out by uslng the tests of Compression failure, Cycled at failure, and Nonfailure equilibrium on remoulded samples under undrained .condition . Consequently there exists a critical level of repeated loading which seperates the behavior of a particular sample into two distinctly different patterns.

  • PDF