• Title/Summary/Keyword: monooxygenase activity

Search Result 81, Processing Time 0.044 seconds

Degradation of Diazinon and Dursban in Submerged Soil (담수양중(湛水壤中) Diazinon 과 Dursban 의 분해(分解)에 관(關)하여)

  • Choi, Jong-Woo;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.2
    • /
    • pp.1-11
    • /
    • 1987
  • The degradation of two chemicals seem to be clearly affected by soil microbial activity in submerged soil $conditions(30{\pm}1^{\circ}C)$. The Active ingredient of Diazinon disappeared about 5 times faster than that of Dursban. By Applying 300% higher concentrations of both chemicals. under the above soil conditions, however, degradation was retarded by about one day. Some of the metabolites of Diazinon were as follows: 0.0-diethyl phosphorothioate and sulfotep as hydrolytic products, and diazoxon, 0.0-diethyl-0-[2-(1-hydroxy-1, 1-dimethyl)-6-methyl]-pyrimidinyl phosphorothioate and 2-isopropyl-6-methyl-pyrimidine-4-one as degradation products of monooxygenase. But 0. 0-diethyl phosphorothioate was the only methabolite of Dursban.

  • PDF

Removal of Endocrine Disrupting Chemicals in Wastewater by Nitrifying Sludge (질산화 슬러지에 의한 폐수 중의 내분비계 장애물질 제거)

  • Lim, Kyoung Jo;Hong, Soon Ho;Chung, Jin Suk;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.775-780
    • /
    • 2009
  • The efficacy of nitrifying sludge existed in biological nutrient removal process was examined for possible removal of endocrine disrupting chemical(EDC) in the effluent of wastewater treatment plant. Some of ammonia oxidizing bacteria causes ammonia oxidation mediated by ammonia monooxygenase(AMO) activity, which has low substrate specificity resulting in cometablic degradation of several chemicals. In this study, the removal of three model EDCs such as bisphenol A(BPA), nonylphenol(NP) and dibutyl phthalate(DBP) was studied in batch cultures using nitrifying sludge, BOD-oxidizing sludge with low nitrifying activity, and sterilized sludge. Nitrifying sludge showed higher initial removal rates in all batches of three EDCs when it was fed with ammonium as an energy source. The acclimation time was required for the removal of EDCs in batches using BOD-oxidizing sludge or nitritefed nitrifying sludge. That retardation seemed to attribute to the slow growth of cells using the EDCs while ammonium-fed nitrifying sludge could degrade EDCs through simultaneous cooxidation with ammonia oxidation. Sterilized sludge was also tested under the same conditions in order to find the contribution of physical adsorption to the removal of EDCs. About 10~20% of initial EDCs dose was removed when using sterilized sludge. Thus the biological activity is likely to play major role for the degradation of BPA, NP, and DBP rather than the physical adsorption from wastewater.

Aerobic Degradation of Tetrachloroethylene(PCE) by Pseudomonas stutzeri OX1

  • Ryoo, Doohyun;Shim, Hojae;Barbieri, Paola;Wood, Thomas K.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.207-208
    • /
    • 2000
  • Since trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) arise from anaerobic degradation of tetrachloroethylene (PCE) and TCE, there is interest in creating aerobic remediation systems that avoid the highly toxic VC and cis-DCE which predonominate in anaerobic degradation. However, it seemed TCE could not be degraded aerobically without an inducing compound (which also competitively inhibits TCE degradation). It has been shown that TCE induces expression of both the toluene dioxygenase of p. putida F1 as well as toluene-p-monooxygenase of P.mendocina KRI. We investigated here the ability of PCE, TCE, and chlorinated phenols to induce toluene-o-xylene monooxygenase (ToMO) from P.stutzeri OX1. ToMO has a relaxed regio-specificity since it hydroxylates toluene in the ortho, meta, and para positions; it also has a broad substrate range as it oxidizes o-xylene, m-xylene, p-xylene, toluene, benzene, ethylbenzene, styrene, and naphthalene; chlorinated compounds including TCE, 1, 1-DCE, cis-DCE, trans-DCE, VC, and chloroform : as well as mixtures of chlorinated aliphatics (Pseudomonas 1999 Maui Meeting). ToMO is a multicomponent enzyme with greatest similarity to the aromatic monooxygenases of Burkholderia pickettii PKO1 and P.mendocina KR1. Using P.sturzeri OX1, it was found that PCE induces P.mendocina KR1 Using P.situtzeri OX1, it was found that PCE induces ToMO activity measured as naphthalene oxygenase activity 2.5-fold, TCE induces 2.3-fold, and toluene induces 3.0 fold. With the mutant P.stutzeri M1 which does not express ToMO, it was also found there was no naphthalene oxygenate activity induced by PCE and TCE; hence, PCE and TCE induce the tow path. Using P.putida PaW340(pPP4062, pFP3028) which has the tow promoter fused to the reporter catechol-2, 3-dioxygenase and the regulator gene touR, it was determined that the tow promoter was induced 5.7-, 7.1-, and 5.2-fold for 2-, 3-, 4-chlorophenol, respectively (cf. 8.9-fold induction with o-cresol) : however, TCE and PCE did not directly induce the tou path. Gas chromatography and chloride ion analysis also showed that TCE induced ToMO expression in P.stutzeri OX1 and was degraded and mineralized. This is the first report of significant PCE induction of any enzyme as well as the first report of chlorinated compound induction of the tou operon. The results indicate TCE and chlorinated phenols can be degraded by P.stutzeri OX1 without a separate inducer of the tou pathway and without competitive inhibition.

  • PDF

Changes of Hepatic Microsomal Cytochrome P450 Monooxygenase System in Nile tilapia, Oreochromis niloticus Exposed to PCBs (PCBs노출에 의한 틸라피아, Oreochromis niloticus의 간 cytochrome P450 효소계의 변화)

  • KANG Ju-Chan;CHO Kyu-Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.194-198
    • /
    • 2001
  • The study was conducted to investigate the changes of hepatic cytochrome P450 monooxygenase system induced by dietary administration of polychlorinated biphenyls (PCBs) in the tilapia, Oreochromis niloticus. Tilapia were fed pellet with PCBs (Aroclor 1254) 0.05, 0.25 and 0.50 mg/kg body weight/day for 30 days. The dietary administration of PCBs (0.05 mg/kg) induced a significantly increased the concentration of cytochrome P450 and the activity of 7-ethoxyresorufin-O-deethylase (EROD) in the hepatopancreas at 30 days, while the augmentation of both responses was found at 20 days with a higher administration of PCBs-diet (0.25 mg/kg). However, hepatic 7-penthoxyresorufin-O-dealkylase (PROD) activity did not show any noticeable changes with the PCBs-diet 0.05-0.5 mg/kg range compared to control group during the experimental periods of 30 days in the tilapia. These results indicate that tilapia fed PCBs at the concentration of more than 0.05 mg/kg for 30 days are affected by PCBs in terms of cytochrome P450 concentration and EROD activity in the hepatopancreas.

  • PDF

Resistance Mechanisms of Green Peach Aphid, Myzus persicae (Homoptera: Aphididae), to Imidacloprid (복숭아혹진딧물(Myzus persicae)의 imidacloprid에 대한 저항성 기작)

  • 최병렬;이시우;유재기
    • Korean journal of applied entomology
    • /
    • v.40 no.3
    • /
    • pp.265-271
    • /
    • 2001
  • Resistance mechanisms in the green peach aphid (Myzus persicae) resistant to imidacloprid were investigated. Imidacloprid residues on the aphid integuments decreased slowly as time passed with no significant difference between the susceptible and resistant strains. Residue in the aphid body increased in both strains with time elapse, and was slightly more in the susceptible strain. A higher metabolic rate of imidacloprid in the resistant strain can be expected by the fact that more amount of imidacloprid were excreted in the resistant strain than in the susceptible one. The activity of AChE was higher 1.4 times in the resistant strain than in the susceptible one, and imidacloprid did not inhibit AChE at all in both strains. Piperonyl butoxide (PBO) and iprobenfos (IBP) synergized imidacloprid activity. The mixtures of imidacloprid and PBO (1 : 1 and 1 : 5) caused 69.4- and 250-fold increase of imidacloprid toxicity against the aphid. Insecticide toxicity of the mixtures of IBP and imidacloprid (1 : 1 and 1 : 5) was also increased 227 and 80.6 times. Esterase activity when $\alpha$-naphtyl butyrate and $\beta$-naphtyl acetate were used as substrates was higher in the resistance strain than in the susceptible one. This means that P450 monooxygenase and esterase are responsible for the resistance to imidacloprid in this aphid strain.

  • PDF

Activity of Mixed Function Oxidase in a few Insect Species in Relation to Their Food Source (먹이종류에 따른 몇가지 곤충의 MFO활성 비교)

  • 이정호;부경생
    • Korean journal of applied entomology
    • /
    • v.32 no.3
    • /
    • pp.291-299
    • /
    • 1993
  • Midgut tissues from 4 insect specIes were exammed for the activity of cytochrome P-450 monooxygenases, a major enzyme involved in chemical detoxification. When Helicoverpa assulta larvae were reared on an artificial d;et, the specific activity of the midgut cytochrome P-450 monooxygenases (MFO) was :3 times higher than that of the fat body, The specific activity of the midgut cytochrome P-450 monooxygenases was higher in H. assul/a larvae when reared on Nicotiana tabacum leaves than when on CapsIcum annuum fruits or an artificial diet. In the case of Hyphantria cunea larvae, Tilia megaphyllo leaves were the best in inducing midgut cytochrome P-450 monooxygenases activity. When larvae of H. assulta, Spodoptera exigua, H. cunea and Spodoptera litura were reared on their own artificial diet, the highest activity was seen in S. exigua larvae which is a polyphagous and insecticide-resistant strain.

  • PDF

Detection of Wound-inducible Trans-Cinnamic Acid-4-Hydroxylase in Avocado, Persea americana, Roots

  • Joo, Eun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.333-337
    • /
    • 1997
  • Trans-cinnamic acid-4-hydroxylase(tC4H) is the first cytochrome P450-dependent monooxygenase of the phenylpropanoid pathway. The roots of avocado seedlings were wounded and examined to determine whether the tC4H would be activated in response to wounding and/or whether tC4H activity be modulated by the application of exogenous p-coumarate. At the specified length of times, the wounded and treated roots were either frozen in liquid nitrogen or used immediately to extract microsomal proteins. The microsomal proteins were subjected to immunoblot analysis using polyclonal antibodies against CYP73 of tC4H gene. In this study, tC4H was induced in wounded roots sealed in bags within 6 hours, and in low level({TEX}$10^{-8}${/TEX}M) of p-coumarate solution within 24 hours, whereas the olution without p-coumarate and high levels of p-coumarate solution repressed tC4H induction in wounded roots. These results indicate that tC4H is induced by wounding in the root of avocado, and is inhibited by the application of exogenous p-coumarate.

  • PDF

Construction of Overexpression Vectors and Purification of the Oxygenase Component of Alkylphenol Hydroxylase of Pseudomonas alkylphenolia (Pseudomonas alkylphenolia의 알킬페놀 산화효소의 과발현 벡터 제작 및 단백질 정제)

  • Lee, Kyoung
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.95-98
    • /
    • 2013
  • Following construction of expression vectors in Escherichia coli, a new procedure involving two-step column purifications with a Fast Performance Liquid Chromatography System was developed for purification of the oxygenase component of alkylphenol hydroxylase of Pseudomonas alkylphenolia. From 50 g wet cake of recombinant E. coli BL21(DE3)(pJJPMO2) cells, 110 mg of pure protein in a heterodimeric form containing a stoichiometric amount of iron were obtained and it exhibited a specific activity of 147 nmole/min/mg.

Estimation of Human Flavin-containing Monooxygenases Activity(FMO1) in the Baculovirus Expression Vector System by using S-oxidation of Methimazole

  • Kim, Young-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.415-421
    • /
    • 1999
  • The flavin-containing monooxygenases (FMOs) (EC 1.14. 13.8) are NADPH-dependent flavoenzymes that catalyze oxidation of soft nucleophilic heteroatom centers in a range of structurally diverse compounds including foods, drugs, pesticides, and other xenobiotics. In humans, FMOl appears to be the predominant form expressed in human fetal liver. cDNA-expressed human FMO and human liver microsomal FMO have been observed to N- and S-oxy-genate nucleophilic nitrogen- and sulfur-containing drugs and chemicals, respectively. In the present study, FMOl can be expressed in the baculovirus expression vector system at level of 2.68 nmol FMOl/mg of membrane protein. This isoform was examined for its capacity to metabolize methimazole to its S-oxide using thiocholine assay. Kinetic studies of its S-oxide by recombinant human FMO1 result in Km of 7.66 $\mu$M and Vmax of 17.79 nmol/min/mg protein.

  • PDF

Development of Parallel TBR system for the treatment of Trichloroethylene by Burkholderia cepacia G4

  • Lee, Eun-Yeol;Ye, Byeong-Dae;Park, Seong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.512-515
    • /
    • 2000
  • A parallel reactor system which is consisted of two trickle bed reactors (TBR) was developed for the biodegradation of trichloroethylene (TCE) in waste gas stream. The reactor were packed with porous ceramic materials and Burkholderia cepacia G4 was inoculated to form biofilms. Each reactor was operated alternatively in TCE degradation or reactivation mode, and the effect of switching time on TBR performance was investigated. The MO (monooxygenase) activity during the TCE transformation decreased below 10 % within 24 hr, but could be recovered to the initial high level within 10 hr after supplying the reactivation medium supplemented with phenol as a carbon source. This shows that the parallel TBR system has a great potential for the long-term stable treatment of TCE.

  • PDF