• Title/Summary/Keyword: monolithic flexure structure

Search Result 4, Processing Time 0.021 seconds

Design and Control of 3DOF High Precision Positioning System With Double L Type Flexure Hinge Module

  • Kim, Ki-Beom;Jeon, Seung-Jin;Hwang, Dal-Yeon;Choi, Young-Jun;Park, Suk-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2524-2528
    • /
    • 2003
  • High-precision position system is widely used in lots of fields such as semiconductor industry, biotechnology, display and other up-to-date industry field. One of the main issues is to have a long traveling range with precision. There are a few solutions. For instance, there are inchworm methods, lever principle. In this study, we use lever principle to amplify output displacement with a new mechanical amplification structure. We designed new type 3DOF stage with PZT actuator and capacitive sensor. Non-monolithic structure is suggested to obtain the convenience of assembly and modification. Driving parts are designed as modules that generate displacement amplification of each axis. Designed motion module consists of 3 flexure hinges and a PZT actuator with double L lever structure.

  • PDF

A Precision Micro-Positioning System by Using Hinge Mechanism

  • Choi, Hyeun-Seok;Lee, Hak-Joon;Han, Chang-Soo;Kim, Seung-Soo;Kim, Eung-Zu;Choi, Tae-Hoon;Na, Kyoung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1344-1348
    • /
    • 2003
  • A precision micro-positioning system with a high displacement resolution and wide motion range has been required for industrialized applications in variety fields. This paper discusses the design of a precision micro-rotation stage with flexure hinges. Proposed system is applied to grinding machine for micro parts. Rotational motion is generated with this system. For this systems having a full rotation motion with high precision, a dual servo system with a coarse stage and a fine stage is proposed.

  • PDF

Portable Calibration System for Displacement Measuring Sensors

  • Eom, Tae-Bong;Lee, Jae-Yun;Kim, Jae-Wan;Joon, Lyou
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.56-59
    • /
    • 2006
  • A vibrational model of powder transfer equipment based on the lumped parameter method was developed, in which the operating motion consists of surging, bouncing, and pitching. After decoupling the equation of motion, the vibrational excitation source of the pitching motion was removed. So the designers are able to plan the optimum design to adjust the motion trajectory of the powder transfer equipment. That is, a procedure to adjust the motion trajectory of powder transfer equipment by changing design specifications such as the installation position, the direction of the motor, the driving speed, the mass unbalance, the stiffness coefficient, and the installation position of the support spring, is presented in this paper. The powder transfer equipment manufactured according to the results of this study did not suffer fatigue destruction, since the maximum stress on the basket structure was sufficiently small.

Modeling and optimal design of monolithic precision XYZ-stage using flexure mechanism (유연기구를 이용한 초정밀 단일체 3축 스테이지의 모델링 및 최적설계에 관한 연구)

  • Shim, Jong-Yeop;Gweon, Dae-Gab
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.868-878
    • /
    • 1998
  • There are recently increasing needs for precision XYZ-stage in the fields of nanotechnology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). Force measurements are made in the AFM by monitoring the deflection of a flexible element (usually a cantilever) in response to the interaction force between the probe tip and the sample and controlling the force neasyred constant topography can be obtained. The power of the STM is based on the strong distance dependence of the tunneling current in the vacuum chamber and the current is a feedback for the tip to trace the surface topography. Therefore, it is required for XYZ-stage to position samples with nanometer resolution, without any crosscouples and any parasitic motion and with fast response. Nanometer resolution is essential to investigate topography with reasonable shape. No crosscouples and parasitic motion is essential to investigate topography without any shape distortion. Fast response is essential to investigate topography without any undesirable interaction between the probe tip and sample surface ; sample scratch. To satisfy these requirements, this paper presents a novel XYZ-stage concept, it is actuated by PZT and has a monolithic flexible body that is made symmetric as possible to guide the motion of the moving body linearly. PZT actuators have a very fast response and infinite resolution. Due to the monolithic structure, this XYZ-stage has no crosscouples and by symmetry it has no parasitic motion. Analytical modeling of this XYZ-stage and its verification by FEM modeling are performed and optimal design that is to maximize 1st natural frequencies of the stage is also presented and with that design values stage is manufactured.