• Title/Summary/Keyword: monolithic

Search Result 975, Processing Time 0.021 seconds

Strength Properties of Wooden Model Erosion Control Dams Using Domestic Pinus rigida Miller I (국내산 리기다소나무를 이용한 목재 모형 사방댐의 강도 성능 평가 I)

  • Kim, Sang-Woo;Park, Jun-Chul;Lee, Dong-Heub;Son, Dong-Won;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.77-87
    • /
    • 2008
  • Wooden model erosion control dam was made with pitch pine, of which the strength properties was evaluated. Wooden model erosion control dam was made with diameter 90 mm of pitch pine round posts treated with CUAZ-2 (Copper Azole), changing joint in three different types. In each type, erosion control dam was made in nine floor (cross-bar of five floors and vertical-bar of four floors), of which the hight was 790 mm. And then strength properties were investigated through horizontal loading test and impact strength test, and the deformation of structure through image processing (AICON 3D DPA-PRO system). In horizontal loading test of wooden model erosion control dam using round post of diameter 90 mm, whether there was stone or not did not affect strength much when using self drill screw, but strength was decreased by 23%. In monolithic type of erosion control dam using screw bar, strength was increased by 1.5 times and deformation was decreased when filling with stone. When reinforcing with screw bar that ring is connected to self drill screw, strength was increased by 4.8 times. In impact strength test of wooden model erosion control dam made with round post of diameter 90 mm, the erosion control dam connected with self drilling screw not filling with stone was totally destroyed by the 1st impact, and the erosion control dam using screw bar was ruptured at cross-bar at which 779 kgf of impact was loaded in the 1st impact. In the 2nd impact, the base parts were ruptured, and reaction force was decreased to 545 kgf. In the 3rd impact, whole base parts were destroyed, and reaction force was decreased to 263 kgf.

Compressive Behavior of Precast Concrete Column with Hollow Corresponding to Hollow Ratio (중공비율에 따른 중공 프리캐스트 철근콘크리트 기둥의 압축거동)

  • Lee, Seung-Jun;Seo, Soo-Yeon;Pei, Wenlong;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.441-448
    • /
    • 2014
  • From several researches, recently, it was found that using hollowed precast concrete (HPC) column made more compact concrete casting in joint region possible than using normal solid PC (Precast concrete) column. Therefore, the rigidity of joints can be improved like those of monolithic reinforced concrete (RC). After filling the hollow with grout concrete, however, it is expected that the HPC column behaviors like composite structure since PC element and grout concrete have different materials as well as there is a contact surface between two elements. These may affect the structural behavior and strength of the composite column. A compressive strength test was performed for the HPC column with parameter of hollow ratio for the case with and without grout in the hollow and the result is presented in this paper. The hollow ratios in the test are 35, 50 and 59% of whole section of column. Concentrated axial force was applied to top of the specimens supported as pin connection for both ends. In addition, finite element (FE) analysis was performed to simulate the failure behavior of HPC column for axial compression. As a result, it was found that the hollow ratio did not affect the initial stiffness of HPC filled with grout regardless of the strength difference of HPC and grout. However the strength was increased inversely corresponding to the hollow ratio. The structural capacity of HPC without grout closely related to the hollow size. Especially, the local collapse governs the overall failure when the thickness of HPC is too thin. Based on these effect, a suitable equation was suggested for calculation of the compressive strength of HPC column with or without grout. FE analysis considering the contact surface between HPC and grout produced a good result matched to the test result.

High LO-RF Isolation W-band MIMIC Single-balanced Mixer (높은 LO-RF 격리 특성의 W-band MIMIC Single-balanced 믹서)

  • An Dan;Lee Bok-Hyung;Lim Byeong-Ok;Lee Mun-Kyo;Lee Sang-Jin;Jin Jin-Min;Go Du-Hyun;Kim Sung-Chan;Shin Dong-Hoon;Park Hyung-Moo;Park Hyim-Chang;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.67-74
    • /
    • 2005
  • In this paper, high LO-RF isolation W-band MIMIC single-balanced mixer was designed and fabricated using a branch line coupler and a $\lambda$/4 transmission line. The simulation results of the designed 94 GHz balun show return loss of -27.9 dB, coupling of -4.26 dB, and thru of -3.77 dB at 94 GHz, respectively. The isolation and phase difference were 23.5 dB and $180.2^{\circ}$ at 94 GHz. The W-band MIMIC single-balanced mixer was designed using the 0.1 $\mu$m InGaAs/InAlAs/GaAs Metamorphic HEMT diode. The fabricated MHEMT was obtained the cut-off frequency(fT) of 189 GHz and the maximum oscillation frequency(fmax) of 334 GHz. The designed MIMIC single-balanced mixer was fabricated using 0.1 $\mu$m MHEMT MIMIC Process. From the measurement, the conversion loss of the single-balanced mixer was 23.1 dB at an LO power of 10 dBm. Pl dB(1 dB compression point) of input and output were 10 dBm and -13.9 dBm respectively. The LO-RF isolations of single-balanced mixer was obtained 45.5 dB at 94.19 GHz. We obtained in this study a higher LO-RF isolation compared to some other balanced mixers in millimeter-wave frequencies.

Plasma-assisted Catalysis for the Abatement of Isopropyl Alcohol over Metal Oxides (금속산화물 촉매상에서 플라즈마를 이용한 IPA 저감)

  • Jo, Jin Oh;Lee, Sang Baek;Jang, Dong Lyong;Park, Jong-Ho;Mok, Young Sun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.375-382
    • /
    • 2014
  • This work investigated the plasma-catalytic decomposition of isopropyl alcohol (IPA) and the behavior of the byproduct compounds over monolith-supported metal oxide catalysts. Iron oxide ($Fe_2O_3$) or copper oxide (CuO) was loaded on a monolithic porous ${\alpha}-Al_2O_3$ support, which was placed inside the coaxial electrodes of plasma reactor. The IPA decomposition efficiency itself hardly depended on the presence and type of metal oxides because the rate of plasma-induced decomposition was so fast, but the behavior of byproduct formation was largely affected by them. The concentrations of the unwanted byproducts, including acetone, formaldehyde, acetaldehyde, methane, carbon monoxide, etc., were in order of $Fe_2O_3/{\alpha}-Al_2O_3$ < $CuO/{\alpha}-Al_2O_3$ < ${\alpha}-Al_2O_3$ from low to high. Under the condition (flow rate: $1L\;min^{-1}$; IPA concentration: 5,000 ppm; $O_2$ content: 10%; discharge power: 47 W), the selectivity towards $CO_2$ was about 40, 80 and 95% for ${\alpha}-Al_2O_3$, $CuO/{\alpha}-Al_2O_3$ and $Fe_2O_3/{\alpha}-Al_2O_3$, respectively, indicating that $Fe_2O_3/{\alpha}-Al_2O_3$ is the most effective for plasma-catalytic oxidation of IPA. Unlike plasma-alone processes in which tar-like products formed from volatile organic compounds are deposited, the present plasma-catalyst hybrid system did not exhibit such a phenomenon, thus retaining the original catalytic activity.

Influence of crown-to-implant ratio of short vs long implants on implant stability and marginal bone loss in the mandibular single molar implant (하악 구치 단일임플란트 수복에서 임플란트 길이에 따른 치관-임플란트 비율이 임플란트안정성 및 변연골소실에 주는 영향)

  • Baek, Yeon-Wha;Kim, Bongju;Kim, Myung-Joo;Kwon, Ho-Beom;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.280-289
    • /
    • 2018
  • Purpose: The purpose of this randomized clinical trial is to determine whether implant length and the crown-to-implant (C/I) ratio influence implant stability and peri-implant marginal bone loss (MBL). Materials and Methods: 46 patients with single tooth missing in the posterior molar region of the mandible were included in this study. 19 implants (CMI IS-III $active^{(R)}$ long implant) of 5.0 mm diameter and 10 mm length were installed for the control group, while 27 implants (CMI IS-III $active^{(R)}$ short implant) of 5.5 mm diameter and 6.6, 7.3 or 8.5 mm length were placed for the experimental group. Each implant was inserted and immediately loaded using the digitally pre-fabricated surgical template and provisional restoration. The CAD-CAM monolithic zirconia crown was fabricated at 3 months after the surgery as a definitive restoration. The ISQ value and the MBL was measured at 48 weeks after the surgery. The correlation between the C/I ratio, MBL, and secondary implant stability was analyzed. Results: Successful results in terms of ISQ and MBL were achieved with both groups. There was no significant difference between the groups in terms of ISQ values and MBL at 48 weeks after the surgery (P > 0.05). No significant correlation was found between the C/I ratio and secondary stability as well as the C/I ratio and the MBL (P > 0.05). Conclusion: The influence of C/I ratio in both groups was not shown on the stability nor the marginal bone loss in implants supporting single crown of the mandible. Short implant could be a preferable alternative option in the reduced bone height mandible under the limited condition despite its higher C/I ratio.