• Title/Summary/Keyword: monocytic cell

Search Result 100, Processing Time 0.024 seconds

Modulatory Effect of BAY11-7082 on CD29-mediated Cell-cell Adhesion in Monocytic U937 Cells (BAY11-7082에 의한 U937 세포의 CD29-매개성 세포간 유착과정 조절 효과)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.412-417
    • /
    • 2008
  • BAY11-7082 was initially found to be an anti-inflammatory drug with NF-${\kappa}B$ inhibitory property. In this study, we evaluated modulatory function of BAY11-7082 on U937 cell-cell adhesion induced by CD29 (${\beta}1$-integrins). BAY11-7082 strongly blocked functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay. However, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. In particular, to understand molecular mechanism of BAY11-7082-mediated inhibition, the regulatory roles of CD29-induced actin cytoskeleton rearrangement under cell-cell adhesion and surface level of CD29 were examined using confocal and flow cytometic analysis. Interestingly, this compound strongly suppressed the molecular association of actin cytoskeleton with CD29 at cell-cell adhesion site. Moreover, BAY11-7082 also diminished surface levels of CD29 as well as its-associated adhesion molecule CD147, but not other adhesion molecules such as CD18 and CD43. Therefore, our data suggest that BAY11-7082 may be involved in regulating immune responses managed by CD29-mediated cell-cell adhesion.

Determination of the minimal sequence of bovine lactoferricin responsible for apoptosis induction

  • Yoo, Yung-Choon;Lee, Kyung-Bok;Lee, Hoi-Young
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.134.2-135
    • /
    • 2003
  • We examined the minimal amino acid sequence of bovine lactoferricin (Lfcin-B), a cationic peptide corresponding to residues 17-41 near the N-terminus of bovine lactoferrin, to induce apoptosis in THP-l human monocytic leukemic cells using synthetic peptides. A synthetic peptide (Lfc-17/29, amino acid sequence; FKCRRWQWRMKKL) which is consist of 13 amino acids near the N-terminus of Lfcin-B induced cell death in THP-1 cells in a dose-dependent manner, showing apparent apoptotic changes such as hypodiploid forms of genomic DNA and apoptotic DNA fragmentation. (omitted)

  • PDF

Inducing effect of helenalin on the differentiation of HL-60 leukemia cells

  • KIm, Seung-Hyun;Kim, Tae-Sung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.166.3-167
    • /
    • 2003
  • Helenalin, a cell-permeable pseudoguainolide sesquiterpene lactone, is a potent anti-inflammatory agent that inhibits $NF-{\kappa}B$ DNA binding activity by selectively alkylating the p65 subunit of $NF-{\kappa}B$. Transcription factors such as $NF-{\kappa}B$ provide powerful target of drugs to use in the treatment of cancer. Human promyelocytic leukemia HL-60 cells are differentiated into monocytic or granulocytic lineage when treated with 1,25-dihydroxyvitamin $D_3{\;}[1,25-(OH)_2D_3]$ or all-trans-retinoic acid (ATRA), respectively. (omitted)

  • PDF

Apoptosis Induction in Human Leukemic Promyelocytic HL-60 and Monocytic U937 Cell Lines by Goniothalamin

  • Petsophonsakul, Ploingarm;Pompimon, Wilart;Banjerdpongchai, Ratana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2885-2889
    • /
    • 2013
  • Goniothalamin is an active compound extracted from Goniothalamus griffithii, a local plant found in northern Thailand. Goniothalamin inhibits cancer cell growth but is also toxic to normal cells. The aims of this study were to identify the cytotoxic effect of goniothalamin and the mechanism of cell death in human HL-60 and U937 cells. Cytotoxicity was determined by MTT assay and cell cycle profiles were demonstrated by staining with propidium iodide (PI) and flow cytometry. Apoptosis was confirmed by staining with annexin V-FITC/propidium iodide (PI) and flow cytometry. Reduction of mitochondrial transmembrane potential was determined by staining with dihexyloxacarbocyanine iodide and flow cytometry and expression of Smac, caspase-8 and -9 was demonstrated by Western blotting. Goniothalamin inhibited growth of HL-60 and U937 cell lines. An increase of SubG1 phase was found in their cell cycle profiles, indicating apoptosis as the mode of cell death. Apoptosis was confirmed by the flip-flop of phosphatidylserine using annexin V-FITC/PI assay in HL60 and U937 cells in a dose response manner. Furthermore, reduction of mitochondrial transmembrane potential was found in both cell types while expression of caspase-8, -9 and Smac/Diablo was increased in HL-60 cells. Taken together, our results indicate that goniothalamin-treated human leukemic cells undergo apoptosis via intrinsic and extrinsic pathways.

Up-regulation of Prothymosin alpha in THP-1 Cells Infected with Mycobacterium tuberculosis (결핵균 감염에 의한 THP-1 세포에서의 Prothymosin alpha 유전자 발현증가)

  • Song, Ho-Yeon;Jang, Kwang-Sik;Byoun, Hee-Sun;Lee, Shin-Je;Kim, Jin-Koo;Choe, Yong-Kyung;Ko, Kwang-Kjune
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.2
    • /
    • pp.149-157
    • /
    • 2000
  • Mycobacterium tuberculosis is capable of growing and survival within macrophage. The purpose of this study was to identify the genes regulated by infection of mycobacteria in human monocytic THP-1 cells. We used the differential display reverse transcriptase polymerase chain reaction (DD RT-PCR) and nothern blot analysis to confirm the differentially expressed genes from THP-1 cells infected with live Mycobacterium tuberculosis H37Rv, heat-killed Mycobacterium tuberculosis H37Rv and live Mycobacterium bovis BCG. Among many up or down-regulated clones, 27 clones were sequenced and compared with known genes on GenBank. Thirteen of over-expressed clones from THP-1 cells infected with live Mycobacterium tuberculosis H37Rv were identical to human prothymosin alpha, eight were novel clones and six clones showed homology with Human ferritin H chain, Esherichia coli bgl, Mouse RNA-dependent EIF-2 alpha kinase, E. coli htrL, Hyaluronan receptor and T cell receptor. Our result suggests that Mycobacterium tuberculosis might regulate prothymosin alpha gene transcription in monocytic THP-1 cell.

  • PDF

Chemokine Lkn-1/CCL15 enhances matrix metalloproteinase-9 release from human macrophages and macrophage-derived foam cells

  • Kwon, Sang-Hee;Ju, Seong-A;Kang, Ji-Hye;Kim, Chu-Sook;Yoo, Hyeon-Mi;Yu, Ri-Na
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.134-137
    • /
    • 2008
  • Atherosclerosis is characterized by a chronic inflammatory disease, and chemokines play an important role in both initiation and progression of atherosclerosis development. Leukotactin-1 (Lkn-1/CCLl5), a new member of the human CC chemokine family, is a potent chemoattractant for leukocytes. Our previous study has demonstrated that Lkn-1/CCL15 plays a role in the initiation of atherosclerosis, however, little is currently known whether Lkn-1/CCL15 is associated with the progression of atherosclerosis. Matrix metalloproteinases (MMPs) in human coronary atherosclerotic lesions playa crucial role in the progression of atherosclerosis by altering the vulnerability of plaque rupture. In the present study, we examined whether Lkn-1/CCLl5 modulates MMP-9 release, which is a prevalent form expressed by activated macrophages and foam cells. Human THP-1 monocytic cells and/or human peripheral blood monocytes (PBMC) were treated with phorbol myristate acetate to induce their differentiation into macrophages. Foam cells were prepared by the treatment of THP-1 macrophages with human oxidized LDL. The macrophages and foam cells were treated with Lkn-1/CCL15, and the levels of MMP-9 release were measured by Gelatin Zymography. Lkn-1/CCL15 significantly enhanced the levels of MMP-9 protein secretion from THP-1 monocytic cells-derived macrophages, human PBMC-derived macrophages, as well as macrophage-derived foam cell in a dose dependent manner. Our data suggest that the action of Lkn-1/CCL15 on macrophages and foam cells to release MMP-9 may contribute to plaque destabilization in the progression of atherosclerosis.

Anti-cell Adhesion Effect of PLM-f74 with U937 Cell from Hallophilic Enterobacteria and Identification of Strain

  • Lim, Jong-Kwon;Seo, Hyo-Jin;Shin, Jin-Hyuk;Lee, Se-Young;Kim, Min-Yong;Kim, Jong-Deog
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.406-411
    • /
    • 2005
  • Fermented materials with enterobacteria isolated from fusiform fish, have strong anti-angiogenesis effect and anti-cell adhesion effect. PLM-f74 got from 74th fraction of size exclusion chromatography from fermented material, showed strong anti-cell adhesion effect between HUVECs and U937 monocytic cell. Adhesion of U937 cell to HUVEC stimulated with IL-1b was clearly inhibited by PLM-f74 in a dose-dependent manner by 12.1, 21.2, 50.9, and 78.2%, when U937 cells treated with each of the PLM-f74 and stimulated with PMA (100 mg/L) was added onto untreated and unstimulated HUVECs, adhesion was observed by 15.8, 31.9, 70.8, and 102%, when both cell types were pretreated with PLM-f74, the adhesion was prominently decreased by 83.7, 99.2, 110, and 120.8%, with 0.74, 3.7, 7.4, and 18.5ug/mL of PLM-f74, respectively. PLM-f74, also, reduced IL-1-stimulated HUVEC expression of adhesion molecules, VCAM-1, ICAM-1, and E-selectin dose-dependently by ELISA method.

  • PDF

MAP Kinase Activation is Required for the MMP-9 Induction by TNF-Stimulation

  • Kim, Kyung-Chan;Lee, Chu-Hee
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1257-1262
    • /
    • 2005
  • MMP-9 is a metalloproteinase capable of basement membrane degradation in vivo. Expression of MMP-9 can be found in normal conditions such as trophoblasts, osteoclasts, and leukocytes and their precursors. They also occur as well as in pathological conditions, such as the invasive growth of primary tumors, metastasis, angiogenesis, rheumatoid arthritis, and periodontal diseases. MMP-9 upregulation can be highly induced by a wide range of agents. These agents include growth factors, cytokines, cell-cell, and cell-ECM adhesion molecules, and agents altering cell shape. Here, we observed that TNF-$\alpha$ stimulated human monocytic cell line, HL-60 produced MMP-9 in a dose and time dependent manner. Real time PCR results indicated transcriptional upregulation of MMP-9 as early as 3 h post TNF-$\alpha$ stimulation. To investigate the signaling pathway underlined in TNF-$\alpha$ induced MMP-9 expression, three MAP kinase inhibitors were added to cells 1 h prior to TNF-$\alpha$ treatment. The ERK inhibitor completely abolished MMP-9 expression by TNF-$\alpha$. But neither p38 MAP kinase nor JNK inhibitor had an effect on TNF-$\alpha$ induced MMP-9 expression, suggesting that ERK activation is required for the MMP-9 induction by TNF-$\alpha$. Taken together, we found that TNF-$\alpha$ stimulation facilitates ERK activation, which results in the transcriptional upregulation of MMP-9 gene and subsequent MMP-9 production and secretion.

Oxidized LDL induces phosphorylation of non-muscle myosin IIA heavy chain in macrophages

  • Park, Young Mi
    • BMB Reports
    • /
    • v.48 no.1
    • /
    • pp.48-53
    • /
    • 2015
  • Oxidized LDL (oxLDL) performs critical roles in atherosclerosis by inducing macrophage foam cell formation and promoting inflammation. There have been reports showing that oxLDL modulates macrophage cytoskeletal functions for oxLDL uptake and trapping, however, the precise mechanism has not been clearly elucidated. Our study examined the effect of oxLDL on non-muscle myosin heavy chain IIA (MHC-IIA) in macrophages. We demonstrated that oxLDL induces phosphorylation of MHC-IIA (Ser1917) in peritoneal macrophages from wild-type mice and THP-1, a human monocytic cell line, but not in macrophages deficient for CD36, a scavenger receptor for oxLDL. Protein kinase C (PKC) inhibitor-treated macrophages did not undergo the oxLDL-induced MHC-IIA phosphorylation. Our immunoprecipitation revealed that oxLDL increased physical association between PKC and MHC-IIA, supporting the role of PKC in this process. We conclude that oxLDL via CD36 induces PKC-mediated MHC-IIA (Ser1917) phosphorylation and this may affect oxLDL-induced functions of macrophages involved in atherosclerosis.

Stress Granules Inhibit Coxsackievirus B3-Mediated Cell Death via Reduction of Mitochondrial Reactive Oxygen Species and Viral Extracellular Release

  • Ji-Ye Park;Ok Sarah Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.582-590
    • /
    • 2023
  • Stress granules (SGs) are cytoplasmic aggregates of RNA-protein complexes that form in response to various cellular stresses and are known to restrict viral access to host translational machinery. However, the underlying molecular mechanisms of SGs during viral infections require further exploration. In this study, we evaluated the effect of SG formation on cellular responses to coxsackievirus B3 (CVB3) infection. Sodium arsenite (AS)-mediated SG formation suppressed cell death induced by tumor necrosis factor-alpha (TNF-a)/cycloheximide (CHX) treatment in HeLa cells, during which G3BP1, an essential SG component, contributed to the modulation of apoptosis pathways. SG formation in response to AS treatment blocked CVB3-mediated cell death, possibly via the reduction of mitochondrial reactive oxygen species. Furthermore, we examined whether AS treatment would affect small extracellular vesicle (sEV) formation and secretion during CVB3 infection and modulate human monocytic cell (THP-1) response. CVB3-enriched sEVs isolated from HeLa cells were able to infect and replicate THP-1 cells without causing cytotoxicity. Interestingly, sEVs from AS-treated HeLa cells inhibited CVB3 replication in THP-1 cells. These findings suggest that SG formation during CVB3 infection modulates cellular response by inhibiting the release of CVB3-enriched sEVs.