• Title/Summary/Keyword: monocrotaline-induced hypertensive rats

Search Result 7, Processing Time 0.021 seconds

The Effects of Jibeakjihwanghwangami(JJHG) on Monocrotaline-induced Hypertensive Rats (지백지황환가미(知柏地黃丸加味)가 monocrotaline으로 유발된 흰쥐의 고혈압 병태모델에 미치는 영향)

  • Kim, Jong-Won;An, Joung-Jo;Jo, Hyun-Kyung;Yoo, Ho-Ryong;Seol, In-Chan;Kim, Yoon-Sik
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.684-702
    • /
    • 2008
  • This experiment was performed to determine the effect of Jibeakjihwanghwangami(JJHG) on hypertension in monocrotaline-induced hypertensive rats. The results obtained were as follows : 1. JJHG showed a safety in cytotoxicity and toxicity of liver. 2. JJHG showed scavenging activity on DPPH free radicals and SOD-like activity. 3. JJHG showed an inhibitory effect on ACE. 4. JJHG significantly decreased blood pressure and pulse in monocrotaline-induced hypertensive rats. 5. JJHG significantly decreased the levels of plasma aldosterone in monocrotaline-induced hypertensive rats. 6. JJHG significantly decreased the levels of potassium in monocrotaline-induced hypertensive rats. 7. JJHG significantly decreased the levels of uric acid. BUN, and creatinine in monocrotaline-induced hypertensive rats. These results suggest that JJHG might be effective in treatment and prevention of hypertension.

  • PDF

An inhibitory effect of tumor necrosis factor-alpha antagonist to gene expression in monocrotaline-induced pulmonary hypertensive rats model

  • Kwon, Jung Hyun;Kim, Kwan Chang;Cho, Min-Sun;Kim, Hae Soon;Sohn, Sejung;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.3
    • /
    • pp.116-124
    • /
    • 2013
  • Purpose: Tumor necrosis factor (TNF)-${\alpha}$ is thought to contribute to pulmonary hypertension. We aimed to investigate the effect of infliximab (TNF-${\alpha}$ antagonist) treatment on pathologic findings and gene expression in a monocrotaline-induced pulmonary hypertension rat model. Methods: Six-week-old male Sprague-Dawley rats were allocated to 3 groups: control (C), single subcutaneous injection of normal saline (0.1 mL/kg); monocrotaline (M), single subcutaneous injection of monocrotaline (60 mg/kg); and monocrotaline + infliximab (M+I), single subcutaneous injection of monocrotaline plus single subcutaneous injection of infliximab (5 mg/kg). The rats were sacrificed after 1, 5, 7, 14, or 28 days. We examined changes in pathology and gene expression levels of TNF-${\alpha}$, endothelin-1 (ET-1), endothelin receptor A (ERA), endothelial nitric oxide synthase (eNOS), matrix metalloproteinase (MMP) 2, and tissue inhibitor of matrix metalloproteinase (TIMP). Results: The increase in medial wall thickness of the pulmonary arteriole in the M+I group was significantly lower than that in the M group on day 7 after infliximab treatment (P<0.05). The number of intraacinar muscular arteries in the M+I group was lower than that in the M group on days 14 and 28 (P<0.05). Expression levels of TNF-${\alpha}$, ET-1, ERA, and MMP2 were significantly lower in the M+I group than in the M group on day 5, whereas eNOS and TIMP expressions were late in the M group (day 28). Conclusion: Infliximab administration induced early changes in pathological findings and expression levels of TNF-${\alpha}$, and MMP2 in a monocrotaline-induced pulmonary hypertension rat model.

Inhibitory Effect of Enalapril in Combination with Ginkgo biloba Extract (EGb 761) on the Monocrotaline-induced Pulmonary Hypertension Rats (Monocrotaline에 의해 유발된 폐고혈압 흰쥐에 있어 Enalapril 및 Ginkgo biloba Extract(EGb 761)의 병용 투여시 억제효과)

  • 이영미;안형수;임세진;안령미
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.487-493
    • /
    • 1999
  • Effects of Ginkgo biloba extract (EGb 761) on the anti-pulmonary hypertensive action of enalapril were evaluated in rats. Pulmonary hypertension was induced by monocrotaline treatment (60mg/kg, i.p.) in normotensive rats. In the systolic pulmonary artery pressure, the control group was 33$\pm$2 mmHg, comparing to the normal group of 19$\pm$1 mmHg. That of enalapril group(20mg/kg/day, p.o.) was 26$\pm$2 mmHg. In the isolated lung preparation, acetylcholine, which was endothelium dependent vasodilator, induced the decrease of pulmonary artery perfusion pressure(-2.0$\pm$0.7 mmHg) in normal group, but the increase of that of 3.4$\pm$0.6 and 3.0$\pm$0.9 mmHg in control and enalapril group, respectively. And that of the combined group was -0.5$\pm$0.2 mmHg. In the isolated pulmonary artery, acetylcholine(10-5M) induced the relaxation of 65$\pm$6% in normal group, but 15 and 8% in control and enalapril group, respectively. And that of the combined group was resulted 55$\pm$2%. These results suggested that co-administration of Ginkgo biloba extract(EGb 761) potentiated the anti-pulmonary hypertensive effects of enalapril through the increase of pulmonary vasodilation due to the protection of endothelial cell by antioxidant action of Ginkgo biloba extract (EGb 761).

  • PDF

Hypoxic pulmonary vasoconstriction and vascular contractility in monocrotaline-induced pulmonary arterial hypertensive rats

  • Kim, Hae Jin;Yoo, Hae Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.641-647
    • /
    • 2016
  • Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vascular remodeling of pulmonary arteries (PAs) and increased vascular resistance in the lung. Monocrotaline (MCT), a toxic alkaloid, is widely used for developing rat models of PAH caused by injury to pulmonary endothelial cells; however, characteristics of vascular functions in MCT-induced PAH vary and are not fully understood. Here, we investigated hypoxic pulmonary vasoconstriction (HPV) responses and effects of various vasoconstrictors with isolated/perfused lungs of MCT-induced PAH (PAH-MCT) rats. Using hematoxylin and eosin staining, we confirmed vascular remodeling (i.e., medial thickening of PA) and right ventricle hypertrophy in PAH-MCT rats. The basal pulmonary arterial pressure (PAP) and PAP increase by a raised flow rate (40 mL/min) were higher in the PAH-MCT than in the control rats. In addition, both high $K^+$ (40 mM KCl)- and angiotensin II-induced PAP increases were higher in the PAH-MCT than in the control rats. Surprisingly, application of a nitric oxide synthase inhibitor, L-$N^G$-Nitroarginine methyl ester (L-NAME), induced a marked PAP increase in the PAH-MCT rats, suggesting that endothelial functions were recovered in the three-week PAH-MCT rats. In addition, the medial thickening of the PA was similar to that in chronic hypoxia-induced PAH (PAH-CH) rats. However, the HPV response (i.e., PAP increased by acute hypoxia) was not affected in the MCT rats, whereas HPV disappeared in the PAH-CH rats. These results showed that vascular contractility and HPV remain robust in the MCT-induced PAH rat model with vascular remodeling.

Effect of Hyeonsamdansameum on Hypertensive Rat Induced Monocrotaline (현삼단삼음(玄蔘丹蔘飮)이 Monocrotaline으로 유발된 고혈압 흰쥐에 미치는 영향)

  • Kang, Cheol-Sik;Jeon, Sang-Yun;Hong, Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1223-1235
    • /
    • 2008
  • This experiment was performed to investigate the effects of Hyeonsamdansameum(HDE) on hypertension. For the study of HDE, we had divided Sprague-Dawley rats to three groups-normal, control, HDE. The control group was injected subcutaneous with monocrotaline(50 mg/kg). The treatment group was injected subcutaneous with monocrotaline(50 mg/kg) and orally administered with HDE extract for 4 weeks(once a day, 208 mg/kg). Then we measured blood pressure, heart rate, on the plasma aldosterone, catecholamine, electrolyte, uric acid, BUN, creatinine, and observed the lung, cardiac muscle. liver. etc. The results of these were as follows: 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and superoxide dismutase(SOD) - like activity were increased. reactive oxygen species (ROS) was decreased. Angiotensin converting enzyme(ACE) inhibitory activity was increased in a concentration-dependent by HDE. HDE significantly increased body weight in monocrotaline hypertensive rat, so supported nearly normal group. HDE significantly decreased blood pressure and heart rate in monocrotaline hypertensive rat. HOE significantly decreased aldosterone in adrenocortical hormones. HDE significantly decreased dopamine. norepinephrine, epinephrine. Na+. Cl- were intended to decrease. K+ was decreased significantly by HDE. Uric acid. BUN were significantly decreased and creatinine was intended to decrease by HDE. HDE inhibited lung, liver and heart injury connected with hypertension. These results suggest that HDE is usefully applied in treatment and prevention of hypertension.

Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor

  • Cha, Seung Ah;Park, Byung Mun;Kim, Suhn Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.447-456
    • /
    • 2018
  • Angiotensin-(1-9) [Ang-(1-9)], generated from Ang I by Ang II converting enzyme 2, has been reported to have protective effects on cardiac and vascular remodeling. However, there is no report about the effect of Ang-(1-9) on pulmonary hypertension. The aim of the present study is to investigate whether Ang-(1-9) improves pulmonary vascular remodeling in monocrotaline (MCT)-induced pulmonary hypertensive rats. Sprague-Dawley rats received Ang-(1-9) ($576{\mu}g/kg/day$) or saline via osmotic mini-pumps for 3 weeks. Three days after implantation of osmotic mini-pumps, 50 mg/kg MCT or vehicle were subcutaneously injected. MCT caused increases in right ventricular weight and systolic pressure, which were reduced by co-administration of Ang-(1-9). Ang-(1-9) also attenuated endothelial damage and medial hypertrophy of pulmonary arterioles as well as pulmonary fibrosis induced by MCT. The protective effects of Ang-(1-9) against pulmonary hypertension were inhibited by Ang type 2 receptor ($AT_2R$) blocker, but not by Mas receptor blocker. Additionally, the levels of LDH and inflammatory cytokines, such as $TNF-{\alpha}$, MCP-1, $IL-1{\beta}$, and IL-6, in plasma were lower in Ang-(1-9) co-treated MCT group than in vehicle-treated MCT group. Changes in expressions of apoptosis-related proteins such as Bax, Bcl2, Caspase-3 and -9 in the lung tissue of MCT rats were attenuated by the treatment with Ang-(1-9). These results indicate that Ang-(1-9) improves MCT-induced pulmonary hypertension by decreasing apoptosis and inflammatory reaction via $AT_2R$.

Decreased inward rectifier and voltage-gated K+ currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats

  • Kim, Sung Eun;Yin, Ming Zhe;Kim, Hae Jin;Vorn, Rany;Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.111-119
    • /
    • 2020
  • In vascular smooth muscle, K+ channels, such as voltage-gated K+ channels (Kv), inward-rectifier K+ channels (Kir), and big-conductance Ca2+-activated K+ channels (BKCa), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (IKv and IKir) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) IKv was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) IKv inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) IKir was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) IBKCa did not differ between branches. Moreover, in PAH rats, IKir and IKv decreased in SCSMCs, but not in RCSMCs or LCSMCs, and IBKCa did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in IKv and IKir occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller IKir in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K+ concentration under increased activity of the myocardium.