• Title/Summary/Keyword: monocot

Search Result 52, Processing Time 0.019 seconds

Expression of Organogenesis-related Genes and Analysis of Genetic Stability by ISSR Markers of Regenerants Derived from the Process of in vitro Organogenesis in Japanese Blood Grass (Imperata cylindrica 'Rubra') (기내배양 홍띠 단계별 재분화체의 기관분화 관련 유전자 발현과 ISSR에 기반한 유전적 안정성 분석)

  • Ye-Jin Lee;In-Jin Kang;Chang-Hyu Bae
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.496-507
    • /
    • 2023
  • The in vitro organogenesis is one of important issues in plant embryology, and somaclonal variations are existing in calli and/or regenerants induced from a process of the organogenesis with in vitro circumstances. In this study, expressions of organogenesis-related genes were evaluated and genetic stability of regenerants derived from the process of in vitro organogenesis were measured using ISSR markers in Imperata cylindrica 'Rubra', Poaceae. The expressions of organogenesis-related genes were detected all of regenerants at the process of the organogenesis. All ISSR markers produced with an average of 71 bands per in vitro-cultured regenerants, and the scorable bands were varied from two to eight with an average of 5.14 bands per a primer. The polymorphism rates of the in vitro regenerants were higher than that of mother plants (1.4%), showing 4.1% (pot-cultured regenerants), 4.3% (field-cultured regenerants), 4.2% (in vitro-cultured regenerants), 5.6% (calli with green shoots) and 1.4% (calli), respectively. The genetic similarity matrix (GSM) among all accessions ranged from 0.747 to 1.0 with a mean of 0.868. GSM of the regenerants showed differences (from 0.972 to 1.00) compared with that of mother plants (0.991). According to the clustering analysis, two independent groups were divided into; the one is mother plants and regenerants cultured at room and open field, the other is regenerants cultured in vitro. The results give a new insight for understanding the dynamics of organogenesis in monocot plant.

Comparison of Agrobacterium-mediated Transformation Efficiency in 43 Korean Wheat Cultivars (국내 밀 43개 품종에 대한 아그로박테리움 형질전환 효율성 검정)

  • Jae Yoon Kim;Geon Hee Lee;Ha Neul Lee;Do Yoon Hyun
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.138-147
    • /
    • 2024
  • Agrobacterium-mediated transformation (AMT) is a method that allows for the stable integration of DNA fragments into the plant genome. Transgenic plants generated through AMT typically exhibit a lower copy number of the transgene compared to those induced by particle bombardment. Furthermore, AMT offers a straightforward and efficient approach for generating transgenic plants. While the transformation efficiency of wheat is comparatively lower than that of other monocot plants such as Rice (Oryza sativa L.) and Maize (Zea mays L.), the cultivars 'Bobwhites' and 'Fielder' are commonly employed for wheat transformation. To date, there have been no reported instances of successful development of transgenic plants using Korean wheat varieties through AMT. This study aims to assess the transformation efficiency of 43 Korean wheat cultivars using the GUS assay, with the goal of identifying suitable Korean wheat cultivars for AMT. The pCAMBIA1301 vector, carrying the β-glucuronidase (GUS) gene, was incorporated into Agrobacterium strain EH105. Following the inoculation of Agrobacterium into immature embryos, GUS assays were conducted 'Saeol', 'Jopum', and 'Jonong' showed 100% (the number of embryos showing GUS spots/the number of embryos used for AMT) among 43 cultivars. In addition, cultivars with more than 70% were 'Saekeumgang', 'Jojung', 'Tapdong', 'Anbaek', 'Dabun', 'Sugang', 'Keumgang', 'Jeokjung', 'Seodun', 'Joeun', 'Dajung', and 'Baekjung'. It seems that the 15 cultivars above showed the possibility of using AMT. On the other hand, 'Yeonbaek', 'Goso', 'Baekgang', and 'Johan' showed less than 20% and GUS spots were not observed in 'Gru', 'Gobun', 'Milseong', and 'Shinmichal-1'. This study explores transient GUS expression in Korean wheat cultivars seven days after AMT. The observed initial high efficiency of transient transformation suggests the potential for subsequent stable transformation efficiency. Korean wheat cultivars demonstrating elevated transient transformation efficiency could serve as promising candidates for the development of stable transgenic wheat.