• Title/Summary/Keyword: monitoring

Search Result 26,364, Processing Time 0.05 seconds

Occurrence of Insect Pests from Street Trees in Six Urban and Suburban Parks of Honam Region, South Korea (호남권 내 6개 지역에서의 도심 및 교외 수목 해충 발생 양상)

  • Jongok Lim;Haneul Yu;Jeongwoon Won;Seokmoo Kang;Suyeon Shin;Yonghwan Park;Chansik Jung
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.371-384
    • /
    • 2023
  • We investigated the occurrence of insect pests on street trees that were planted or naturally grew in a total of six urban and suburban parks (two sites in Iksan, one site in Gimje and three sites in Gwangju) in Honam region, South Korea from May to September, 2022. The six survey sites are divided into three characters, two 'nearby forest (NF)', two 'nearby river (NR)' and two 'nearby downtown (ND)' according to the created location of sites and the results on fauna of insect pests compared with street tree species for each character of survey sites. As results, we could discover 51 species of 49 genera in 27 families belonging to five insect orders from a total of 21 tree species belonging to 13 families in six survey sites. Among the insect taxa, hemipteran pests are most diverse with 22 species of 20 genera in 12 families and it is confirmed that Prunus × yedoensis Matsum. (Rosaceae) is damaged by most diverse 25 insect pests. With regard to character of survey sites, trees in 'nearby river' were affected by most diverse 34 insect pests, even though tree species were few compare to sites of 'nearby forest' and 'nearby downtown. Among the affected area of tree parts, leaf-feeding insect pests are most diverse with 22 species. From the present study, we provided a checklist of insect pests from the street trees and selected six most concerned species. Indeed, it is needed to conduct sustainable surveys and monitoring on occurrence of insect pests from street trees in urban and suburban parks because the species of planted street trees in parks can be extremely diverse with occurrence of unexpected insect pests.

Review of applicability of Turbidity-SS relationship in hyperspectral imaging-based turbid water monitoring (초분광영상 기반 탁수 모니터링에서의 탁도-SS 관계식 적용성 검토)

  • Kim, Jongmin;Kim, Gwang Soo;Kwon, Siyoon;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.919-928
    • /
    • 2023
  • Rainfall characteristics in Korea are concentrated during the summer flood season. In particular, when a large amount of turbid water flows into the dam due to the increasing trend of concentrated rainfall due to abnormal rainfall and abnormal weather conditions, prolonged turbid water phenomenon occurs due to the overturning phenomenon. Much research is being conducted on turbid water prediction to solve these problems. To predict turbid water, turbid water data from the upstream inflow is required, but spatial and temporal data resolution is currently insufficient. To improve temporal resolution, the development of the Turbidity-SS conversion equation is necessary, and to improve spatial resolution, multi-item water quality measurement instrument (YSI), Laser In-Situ Scattering and Transmissometry (LISST), and hyperspectral sensors are needed. Sensor-based measurement can improve the spatial resolution of turbid water by measuring line and surface unit data. In addition, in the case of LISST-200X, it is possible to collect data on particle size, etc., so it can be used in the Turbidity-SS conversion equation for fraction (Clay: Silt: Sand). In addition, among recent remote sensing methods, the spatial distribution of turbid water can be presented when using UAVs with higher spatial and temporal resolutions than other payloads and hyperspectral sensors with high spectral and radiometric resolutions. Therefore, in this study, the Turbidity-SS conversion equation was calculated according to the fraction through laboratory analysis using LISST-200X and YSI-EXO, and sensor-based field measurements including UAV (Matrice 600) and hyperspectral sensor (microHSI 410 SHARK) were used. Through this, the spatial distribution of turbidity and suspended sediment concentration, and the turbidity calculated using the Turbidity-SS conversion equation based on the measured suspended sediment concentration, was presented. Through this, we attempted to review the applicability of the Turbidity-SS conversion equation and understand the current status of turbid water occurrence.

Studies on Xylooligosaccharide Analysis Method Standardization using HPLC-UVD in Health Functional Food (건강기능식품에서 HPLC-UVD를 이용한 자일로올리고당 시험법의 표준화 연구)

  • Se-Yun Lee;Hee-Sun Jeong;Kyu-Heon Kim;Mi-Young Lee;Jung-Ho Choi;Jeong-Sun Ahn;Kwang-Il Kwon;Hye-Young Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.72-82
    • /
    • 2024
  • This study aimed to develop a scientifically and systematically standardized xylooligosaccharide analytical method that can be applied to products with various formulations. The analysis method was conducted using HPLC with Cadenza C18 column, involving pre-column derivatization with 1-phenyl-3-methyl-5-pyrazoline (PMP) and UV detection at 254 nm. The xylooligosaccharide content was analyzed by converting xylooligosaccharide into xylose through acid hydrolysis. The pre-treated methods were compared and evaluated by varying sonication time, acid hydrolysis time, and concentration. Optimal equipment conditions were achieved with a mobile phase consisting of 20 mM potassium phosphate buffer (pH 6)-acetonitrile (78:22, v/v) through isocratic elution at a flow rate of 0.5 mL/min (254 nm). Furthermore, we validated the advanced standardized analysis method to support the suitability of the proposed analytical procedure such as specificity, linearity, detection limits (LOD), quantitative limits (LOQ), accuracy, and precision. The standardized analysis method is now in use for monitoring relevant health-functional food products available in the market. Our results have demonstrated that the standardized analysis method is expected to enhance the reliability of quality control for healthy functional foods containing xylooligosaccharide.

Effect of Milling on Reduction of Fusarium Mycotoxins in Barley (보리 도정이 Fusarium 곰팡이독소 저감에 미치는 효과)

  • Seul Gi Baek;Mi-Jeong Lee;Ju-Young Nah;Soo Bin Yim;Jung-Hye Choi;Jang Nam Choi;Ja Yeong Jang;Jung-Wook Yang;Theresa Lee
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.384-389
    • /
    • 2023
  • Milling can affect the distribution of mycotoxins in small grains. To investigate the effects on barley, seven hulled barley and three naked barley samples naturally contaminated with trichothecenes and zearalenone were obtained and milled at commonly used rates. Both barleys were simultaneously contaminated with deoxynivalenol and its acetyl derivatives (98.1-2,197.8 ㎍/kg), nivalenol and its acetyl derivative (468.5-3,965.1 ㎍/kg), and zearalenone (4.1-274.2 ㎍/kg). Milling hulled barleys at a rate of 67% reduced the mycotoxins in the grain by 90.9% for deoxynivalenol, 87.7% for nivalenol, and 93.2% for zearalenone. The reduction in naked barleys (milled at a rate of 70%) was slightly lower than in hulled barleys, with 88.6% for deoxynivalenol, 80.2% for nivalenol, and 70.1% for zearalenone. In both barleys, the acetyl derivatives of deoxynivalenol and nivalenol were reduced by 100%. However, barley bran had significantly higher mycotoxin concentrations than the pre-milled grains: bran from hulled barley had a 357% increase in deoxynivalenol, 252% increase in nivalenol, and 169% increase in zearalenone. Similarly, bran from naked barley had a 337% increase in deoxynivalenol, 239% increase in nivalenol, and 554% increase in zearalenone. These results show that mycotoxins present in the outer layers of barley grain can be effectively removed through the milling process. As milling redistributes mycotoxins from the grain into the bran, however, it shows that advance monitoring of barley bran is recommended when using barley bran for human or animal consumption.

Analysis of Micro-Sedimentary Structure Characteristics Using Ultra-High Resolution UAV Imagery: Hwangdo Tidal Flat, South Korea (초고해상도 무인항공기 영상을 이용한 한국 황도 갯벌의 미세 퇴적 구조 특성 분석)

  • Minju Kim;Won-Kyung Baek;Hoi Soo Jung;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.295-305
    • /
    • 2024
  • This study aims to analyze the micro-sedimentary structures of the Hwangdo tidal flats using ultra-high resolution unmanned aerial vehicle (UAV) data. Tidal flats, located in the transitional area between land and sea, constantly change due to tidal activities and provide a unique environment important for understanding sedimentary processes and environmental conditions. Traditional field observation methods are limited in spatial and temporal coverage, and existing satellite imagery does not provide sufficient resolution to study micro-sedimentary structures. To overcome these limitations, high-resolution images of the Hwangdo tidal flats in Chungcheongnam-do were acquired using UAVs. This area has experienced significant changes in its sedimentary environment due to coastal development projects such as sea wall construction. From May 17 to 18, 2022, sediment samples were collected from 91 points during field surveys and 25 in-situ points were intensively analyzed. UAV data with a spatial resolution of approximately 0.9 mm allowed identifying and extracting parameters related to micro-sedimentary structures. For mud cracks, the length of the major axis of the polygons was extracted, and the wavelength and ripple symmetry index were extracted for ripple marks. The results of the study showed that in areas with mud content above 80%, mud cracks formed at an average major axis length of 37.3 cm. In regions with sand content above 60%, ripples with an average wavelength of 8 cm and a ripple symmetry index of 2.0 were formed. This study demonstrated that micro-sedimentary structures of tidal flats can be effectively analyzed using ultra-high resolution UAV data without field surveys. This highlights the potential of UAV technology as an important tool in environmental monitoring and coastal management and shows its usefulness in the study of sedimentary structures. In addition, the results of this study are expected to serve as baseline data for more accurate sedimentary facies classification.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.

<Field Action Report> Local Governance for COVID-19 Response of Daegu Metropolitan City (<사례보고> 코로나바이러스감염증-19 유행과 로컬 거버넌스 - 2020년 대구광역시 유행에 대한 대응을 중심으로 -)

  • Kyeong-Soo Lee;Jung Jeung Lee;Keon-Yeop Kim;Jong-Yeon Kim;Tae-Yoon Hwang;Nam-Soo Hong;Jun Hyun Hwang;Jaeyoung Ha
    • Journal of agricultural medicine and community health
    • /
    • v.49 no.1
    • /
    • pp.13-36
    • /
    • 2024
  • Objectives: The purpose of this field case report is 1) to analyze the community's strategy and performance in responding to infectious diseases through the case of COVID-19 infectious disease crisis response of Daegu Metropolitan City, and 2) to interpret this case using governance theory and infectious disease response governance framework. and 3) to propose a strategic model to prepare for future infectious disease outbreaks of the community. Methods: Cases of Daegu Metropolitan City's infectious disease crisis response were analyzed through researchers' participatory observations. And review of OVID-19 White Paper of Daegu Metropolitan City, Daegu Medical Association's COVID-19 White Paper, and literature review of domestic and international governance, and administrative documents. Results: Through the researcher's participatory observation and literature review, 1) establishment of leadership and response system to respond to the infectious disease crisis in Daegu Metropolitan City, 2) citizen's participation and communication strategy through the pan-citizen response committee, 3) cooperation between Daegu Metropolitan City and governance of public-private medical facilities, 4) decision-making and crisis response through participation and communication between the Daegu Metropolitan City Medical Association, Medi-City Daegu Council, and medical experts of private sector, 5) symptom monitoring and patient triage strategies and treatment response for confirmed infectious disease patients by member of Daegu Medical Association, 6) strategies and implications for establishing and utilizing a local infectious disease crisis response information system were derived. Conclusions: The results of the study empirically demonstrate that collaborative governance of the community through the participation of citizens, private sector experts, and community medical facilities is a key element for effective response to infectious disease crises.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

Vegetation Change of Abies koreana Habitats in the Subalpine Zone of Mt. Jirisan over Eight Years (지리산 아고산대 구상나무 자생지의 8년간 식생 변화)

  • Da-Eun Park;Jeong-Eun Lee;Go Eun Park;Hee-Moon Yang;Ho-Jin Kim;Chung-Weon Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.222-238
    • /
    • 2024
  • Coniferous species in subalpine ecosystems are known to be highly sensitive to climate change. Therefore, it is becoming increasingly important to monitor community and population dynamics. This study monitored 37 plots within the distribution area of Abies koreana on Mt. Jirisan for a period of eight years. We analyzed the importance value, density of living stems, mortality rate, recruitment rate, basal area, DBH (diameter of breast height) class distribution, and tree health status. Our results showed changes in the importance value based on the tree stratum, with A. koreana decreasing by 3.6% and Tripterygium regelii increasing by 2.5% in the tree layer. Between 2015 and 2023, there were 149 dead trees/ha (17.99% mortality rate) and 12 living trees/ha (1.02% recruitment rate) of A. koreana. The decrease in basal area was attributed to a decrease in the number of living trees. Tree mortality occurred in all DBH classes, with a particularly high decline in the <10 cm class (65 trees/ha reduced). In terms of changes in tree health status, the population of alive standing (AS) type trees, initially consisting of 539 trees/ha, has been transformed into alive standing (AS), alive lean (AL), and death standing (DS), accounting for 69.7%, 0.5%, and 13.8%, respectively. Meanwhile, DS-type trees have transitioned into dead broken (DB) and dead fallen (DF) types. This phenomenon is believed to be caused by strong winds in the subalpine region that pull up the rootlets from the soil. Further research on this finding is recommended.

Seasonal Variations of Microphytobenthos in Sediments of the Estuarine Muddy Sandflat of Gwangyang Bay: HPLC Pigment Analysis (광합성색소 분석을 통한 광양만 갯벌 퇴적물 중 저서미세조류의 계절변화)

  • Lee, Yong-Woo;Choi, Eun-Jung;Kim, Young-Sang;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • Seasonal variations of microalgal biomass and community composition in both the sediment and the seawater were investigated by HPLC pigment analysis in an estuarine muddy sandflat of Gwangyang Bay from January to November 2002. Based on the photosynthetic pigments, fucoxanthin, diadinoxanthin, and diatoxanthin were the most dominant pigments all the year round, indicating that diatoms were the predominant algal groups of both the sediment and the seawater in Gwangyang Bay. The other algal pigments except the diatom-marker pigments showed relatively low concentrations. Microphytobenthic chlorophyll ${\alpha}$ concentrations in the upper layer (0.5 cm) of sediments ranged from 3.44 (March at the middle site of the tidal flat) to 169 (July at the upper site) mg $m^{-2}$, with the annual mean concentrations of $68.4{\pm}45.5,\;21.3{\pm}14.3,\;22.9{\pm}15.6mg\;m^{-2}$ at the upper, middle, and lower tidal sites, respectively. Depth-integrated chlorophyll ${\alpha}$ concentrations in the overlying water column ranged from 1.66 (November) to 11.7 (July) mg $m^{-2}$, with an annual mean of $6.96{\pm}3.04mg\;m^{-2}$. Microphytobenthic biomasses were about 3${\sim}$10 times higher than depth-integrated phytoplankton biomass in the overlying water column. The physical characteristics of this shallow estuarine tidal flat, similarity in taxonomic composition of the phytoplankton and microphytobenthos, and similar seasonal patterns in their biomasses suggest that resuspended microphytobenthos are an important component of phytoplankton biomass in Gwangyang Bay. Therefore, considering the importance of microphytobenthos as possible food source for the estuarine benthic and pelagic consumers, a consistent monitoring work on the behavior of microphytobenthos is needed in the tidal flat ecosystems.