• Title/Summary/Keyword: mongolian oaks

Search Result 6, Processing Time 0.018 seconds

Classification of Forest Cover Types in the Baekdudaegan, South Korea

  • Chung, Sang Hoon;Lee, Sang Tae
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.269-279
    • /
    • 2021
  • This study was carried out to introduce the forest cover types of the Baekdudaegan inhabiting the number of native tree species. In order to understand the vegetation distribution characteristics of the Baekdudaegan, a vegetation survey was conducted on the major 20 mountains of the Baekdudaegan. The vegetation data were collected from 3,959 sample points by the point-centered quarter method. Each mountain was classified into 4-7 forests by using various multivariate statistical methods such as cluster analysis, indicator species analysis, multiple discriminant analysis, and species composition analysis. The forests were classified mainly according to the relative abundance of Quercus mongolica. There was a total of 111 classified forests and these forests were integrated into the following nine forest cover types using the percentage similarity index and by clustering according to vegetation type: 1) Mongolian oak, 2) Mongolian oak and other deciduous, 3) Oaks (Mixed Quercus spp.), 4) Korean red pine, 5) Korean red pine and oaks, 6) ash, 7) mixed mesophytic, 8) subalpine zone coniferous, and 9) miscellaneous forest. Forests grouped within the subalpine zone coniferous and miscellaneous classifications were characterized by similar environmental conditions and those forests that did not fit in any other category, respectively.

Relationships between Climate and Tree-Ring Growths of Mongolian Oaks with Various Topographical Characteristics in Mt. Worak, Korea (지형적 특성에 따른 월악산 신갈나무의 연륜생장과 기후와의 관계)

  • Seo, Jeong-Wook;Park, Won-Kyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.36-45
    • /
    • 2010
  • To analyze the relationship between climatic factors (monthly mean temperature and total precipitation) and tree-ring growths of Quercus mongolica Fischer (Mongolian oak) with different topographic sites in Mt. Worak, more than 10 trees were selected from each of seven stands. Two cores from each tree were measured for ring width. After crossdating, each ring-width series was double standardized by fitting first a negative exponential or straight regression line and secondly a 60-year cubic spline. Seven stands were categorized in two groups using cluster analysis for tree-ring index patterns. Cluster I (four stands) was located in higher elevation (550-812 m) with aspects of east, west and northwest, and cluster II (three stands) was located in rather lower election (330-628 m) with aspects of north and northwest. The aspects of two clusters were not significantly different. Response-function analysis showed a significant positive response to March precipitation for both clusters. It indicates that moisture supply during early spring season is important to radial growth because the cambial growths of ring-porous species, such as Mongolian oak, start before leaf growth. Cluster II showed a positive response to the precipitation of middle and late growing season, too.

Studies on the Regeneration Process of a Quercus mongolica Forest in Mt. Jumbong (점봉산(點鳳山) 신갈나무(Quercus mongolica Fischer)림(林)의 갱신(更新) 과정(過程)에 관(關)한 연구(硏究))

  • Kim, Seong Deog;Kim, Yoon Dong
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.447-455
    • /
    • 1995
  • Regeneration process of a mongolian oak forest in Bukam-Ryeong area, Mt. Jumbong, Kangwon-Do, was studied in relation to its structure. The dominant trees of the stands came up beyond 10m in height. The upper-tree layer was highly dominated by oaks, and they distributed horizontally in random. Oak trees of the middle layer and the lower layer were few in number and small in basal area, and tended to be distributed contagiously. In the trees of the upper layer, the distribution of the age tended to be two modal type which has the mode of 70 and 230 years in plot. In the horizontal distribution of these trees, some of the even-aged cluster which were constituted of several trees, were found. The rate of the stern diameter increment during first 25 years of the oaks in upper layer were higher than those of the same species in the middle layer. These results showed that after the forest canopy had been broken out, the seedlings which were established in dense there grow with the decreasing density and some of these, of which distribution became in random, would constitute the canopy.

  • PDF

Estimating Carbon Sequestration by Planting a Leisure-Recreation Place in Gangwon Province, Korea (레저휴양공간의 수목 추가식재가 탄소흡수기능 향상에 미치는 효과)

  • Hong, Suk-Hwan;Sung, Chan-Yong;Yoo, Ki-Joon;Cho, Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.3
    • /
    • pp.446-453
    • /
    • 2012
  • This study estimated how much carbon can be sequestered if we plant trees in non-forested areas in the 36 hole Oak Valley Golf Courses in Gangwon Province, Korea. We identified plantable areas where planting trees will not affect golf game using high resolution aerial photography and ground survey and estimated the annual carbon sequestration rate of the planted trees using biomass equations. Of the golf courses, 30.3% were covered by forest. Other major land cover types include lawn, waterbody, baresoil, buildings, and roads. The plantable areas consist of $106,101m^2$ of lawn (6.0% of the study site) and $177,531m^2$ of low density forest (10.1% of the study site). We assumed to plant Mongolian oaks with 10 cm in diameter at brest height with the density of $0.3/m^2$ in the lawn and $0.2/m^2$ in the low density forest. The planting simulation shows that the total number of the newly planted trees were 67,336, and the total carbon sequestered during the subsequent year was 392.9 tC/yr, which offset 12.5% of the total carbon emitted from the golf courses. The annual carbon sequestration rate gradually increases and reaches its maximum level at 440.5 tC/yr in 15 years since the initial reforestation (14.0% of the carbon emission from the golf courses).

Predicting Site Quality by Partial Least Squares Regression Using Site and Soil Attributes in Quercus mongolica Stands (신갈나무 임분의 입지 및 토양 속성을 이용한 부분최소제곱 회귀의 지위추정 모형)

  • Choonsig Kim;Gyeongwon Baek;Sang Hoon Chung;Jaehong Hwang;Sang Tae Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.23-31
    • /
    • 2023
  • Predicting forest productivity is essential to evaluate sustainable forest management or to enhance forest ecosystem services. Ordinary least squares (OLS) and partial least squares (PLS) regression models were used to develop predictive models for forest productivity (site index) from the site characteristics and soil profile, along with soil physical and chemical properties, of 112 Quercus mongolica stands. The adjusted coefficients of determination (adjusted R2) in the regression models were higher for the site characteristics and soil profile of B horizon (R2=0.32) and of A horizon (R2=0.29) than for the soil physical and chemical properties of B horizon (R2=0.21) and A horizon (R2=0.09). The PLS models (R2=0.20-0.32) were better predictors of site index than the OLS models (R2=0.09-0.31). These results suggest that the regression models for Q. mongolica can be applied to predict the forest productivity, but new variables may need to be developed to enhance the explanatory power of regression models.

Changes in Distribution of Debris Slopes and Vegetation Characteristics in Mudeungsan National Park (무등산국립공원의 암설사면 분포변화 및 식생 특성)

  • Seok-Gon Park;Dong-Hyo Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • We analyzed the distribution area of debris slopes in Mudeungsan (Mt. Mudeung) National Park by comparing aerial photos of the past (1966) and the present (2017) and identified the vegetation characteristics that affect the change in the area of the debris slopes by investigating the vegetation status of the debris slopes and the surrounding areas. The area of debris slopes in Mt. Mudeung appears to have been reduced to a quarter of what it used to be. Debris slopes here have decreased at an average rate of 2.3 ha/yr over 51 years by vegetation covers. Notably, most of the small-area debris slopes in the low-inclination slopes disappeared due to active vegetation coverage. However, there are still west-facing, south-west-facing, south-facing, and large-area debris slopes remaining because the sun's radiant heat rapidly raises the surface temperature of rock blocks and dries moisture, making tree growth unfavorable. Because of these locational characteristics, the small-scale vegetation in the middle of Deoksan Stony Slope, which is the broadest area, showed distinct characteristics from the adjacent forest areas. Sunny places and tree species with excellent drying resistance were observed frequently in Deoksan Stony Slope. However, tree species with high hygropreference that grow well in valleys with good soil conditions also prevailed. In some of these places, the soil layer has been well developed due to the accumulation of fine materials and organic matter between the crevices of the rock blocks, which is likely to have provided favorable conditions for such tree species to settle and grow. At the top of Mt. Mudeung, on the other hand, the forest covered the debris slopes, where Mongolian oaks (Quercus mongolica) and royal azaleas (Rhododendron schlippenbachii), which typically grow in the highlands, prevailed. This area was considered favorable for the development of vegetation for the highlands because the density of rock blocks was lower than in Deoksan Stony Slope, and the soil was exposed. Moreover, ash trees (Fraxinus rhynchophylla) and Korean maple trees (Acer pseudosieboldianum) that commonly appear in the valley areas were dominant here. It is probably due to the increased moisture content in the soil, which resulted from creating a depressive landform with a concave shape that is easy to collect rainwater as rock blocks in some areas fell and piled up in the lower region. In conclusion, the area, density of the rock blocks, and distribution pattern of rock block slopes would have affected the vegetation development and species composition in the debris slope landform.