• Title/Summary/Keyword: moment-resisting frame

Search Result 268, Processing Time 0.024 seconds

A risk-based framework for design of concrete structures against earthquake

  • Hassani, Mohammadhassan;Behnam, Behrouz;Maknoon, Reza
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.167-179
    • /
    • 2020
  • Optimal design of structures against earthquake loads is often limited to reduce initial construction costs, while the cost induced to structures during their useful life may be several times greater than the initial costs. Therefore, it is necessary to consider the indirect costs due to earthquakes in the design process. In this research, an integrated methodology for calculating life cycle cost (LCC) of moment-resisting concrete frames is presented. Increasing seismic safety of structures and reducing human casualties can play an important role in determining the optimal design. Costs incurred for structures are added to the costs of construction, including the costs of reconstruction, financial losses due to the time spent on reconstruction, interruption in building functionality, the value of people's life or disability, and content loss are a major part of the future costs. In this research, fifty years of useful life of structures from the beginning of the construction is considered as the life cycle. These costs should be considered as factors of calculating indirect costs of a structure. The results of this work represent the life cycle cost of a 4 story, 7 story, and 10 story moment-resisting concrete frame by details. This methodology is developed based on the economic conditions of Iran in 2016 and for the case of Tehran city.

Evaluation of ductility capacity of steel-timber hybrid buildings for seismic design in Taiwan

  • Chen, Pei-Ching;Su, I-Ping
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.197-206
    • /
    • 2022
  • Recently, steel-timber hybrid buildings have become prevalent worldwide because several advantages of both steel and timber structures are maintained in the hybrid system. In Taiwan, seismic design specification related to steel-timber hybrid buildings remains void. In this study, the ductility capacity of steel-timber hybrid buildings in Taiwanese seismic design specification is first proposed and evaluated using nonlinear incremental dynamic analysis (IDA). Three non-linear structural models, 12-story, 8-story, and 6-story steel-timer hybrid buildings were constructed using OpenSees. In each model, Douglas-fir was adopted to assemble the upper 4 stories as a timber structure while a conventional steel moment-resisting frame was designated in the lower part of the model. FEMA P-695 methodology was employed to perform IDAs considering 44 earthquakes to assess if the ductility capacity of steel-timber hybrid building is appropriate. The analytical results indicate that the current ductility capacity of steel moment-resisting frames can be directly applied to steel-timber hybrid buildings if the drift ratio of each story under the seismic design force for buildings in Taiwan is less than 0.3%. As a result, engineers are able to design a steel-timber hybrid building straightforwardly by following current design specification. Otherwise, the ductility capacity of steel-timber hybrid buildings must be modified which depends on further studies in the future.

Iterative-R: A reliability-based calibration framework of response modification factor for steel frames

  • Soleimani-Babakamali, Mohammad Hesam;Nasrollahzadeh, Kourosh;Moghadam, Amin
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.59-74
    • /
    • 2022
  • This study introduces a general reliability-based, performance-based design framework to design frames regarding their uncertainties and user-defined design goals. The Iterative-R method extracted from the main framework can designate a proper R (i.e., response modification factor) satisfying the design goal regarding target reliability index and pre-defined probability of collapse. The proposed methodology is based on FEMA P-695 and can be used for all systems that FEMA P-695 applies. To exemplify the method, multiple three-dimensional, four-story steel special moment-resisting frames are considered. Closed-form relationships are fitted between frames' responses and the modeling parameters. Those fits are used to construct limit state functions to apply reliability analysis methods for design safety assessment and the selection of proper R. The frameworks' unique feature is to consider arbitrarily defined probability density functions of frames' modeling parameters with an insignificant analysis burden. This characteristic enables the alteration in those parameters' distributions to meet the design goal. Furthermore, with sensitivity analysis, the most impactful parameters are identifiable for possible improvements to meet the design goal. In the studied examples, it is revealed that a proper R for frames with different levels of uncertainties could be significantly different from suggested values in design codes, alarming the importance of considering the stochastic behavior of elements' nonlinear behavior.

Seismic fragility assessment of steel moment-resisting frames equipped with superelastic viscous dampers

  • Abbas Ghasemi;Fatemeh Arkavazi;Hamzeh Shakib
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.343-358
    • /
    • 2023
  • The superelastic viscous damper (SVD) is a hybrid passive control device comprising a viscoelastic damper and shape memory alloy (SMA) cables connected in series. The SVD is an innovative damper through which a large amount of seismic energy can dissipate. The current study assessed the seismic collapse induced by steel moment-resisting frames (SMRFs) equipped with SVDs and compared them with the performance of special MRFs and buckling restrained brace frames (BRBFs). For this purpose, nonlinear dynamic and incremental dynamic analysis (IDA) were conducted in OpenSees software. Both 5- and 9-story special MRFs, BRBFs, and MRFs equipped with the SVDs were examined. The results indicated that the annual exceedance rate for maximum residual drifts of 0.2% and 0.5% for the BRBFs and MRFs with SVDs, respectively, were considerably less than for SMRFs with reduced-beam section (RBS) connections and that the seismic performances of these structures were enhanced with the use of the BRB and SVD. The probability of collapse due to residual drift in the SVD, BRB, and RBS frames in the 9-story structure was 1.45, 1.75, and 1.05 times greater than for the 5-story frame.

Reversed Lateral Load Test of A 2-Bay 2-Story Reinforced Concrete Frame with Seismic Detail (내진상세를 가진 2경간 2층 철근콘크리트 골조의 반복횡하중 실험)

  • 이한선;우성우;권준혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.317-322
    • /
    • 1996
  • The objective of this study is to investigate the characteristics of elastic and inelasitc behavior of ductile moment-resisting reinforced concrete frame subhected to reversed lateral loading such as eqrthquake excitations. For this purpose, a 2-bay 2-story R.C. plane frame with seismic detail was designed and one 1/2.5-scale subassemblage was manufactured according to the required similitude law. Then the reversed load test under the displacement control was performed statically to this subassemblage. Finally the results of this test were analysed regarding to (1) the design load vs actual strength, (2) degradation in stiffness and strength, (3) failure mode or main plastic mechanism in energy dissipation, (4) local deformations.

  • PDF

A Study on a Repair Technique for a Reinforced Concrete Frame Subjected to Seismic Damage Using Prestressing Cable Bracing

  • Lee, Jin Ho;EI-Ganzory, Hisham
    • Architectural research
    • /
    • v.3 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • The proposed building upgrading technique employs prestressing cables to function as bracing to improve the seismic performance during future events. A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is assessed and upgraded using the proposed technique. Both existing and upgraded buildings are evaluated in regard of seismic performance parameters performing static lateral load to collapse analysis and dynamic nonlinear time history analysis as well. To obtain realistic comparison of seismic performance between existing and upgraded frames, each frame is subjected to its critical ground motion that has strength demand exceeding the building strength supply. Furthermore, reliability of static lateral load to collapse analysis as a substitute to time history analysis is evaluated. The results reveal that the proposed upgrading technique improves the stiffness distribution compared to the ideal distribution that gives equal inter-story drift. As a result, the upgraded building retains more stories that contribute to energy dissipation. The overall behavior of upgraded building beyond yield is also enhanced due to the gradual change of building stiffness as the lateral load increases.

  • PDF

Adopting flexibility of the end-plate connections in steel moment frames

  • Ghassemieh, M.;Baei, M.;Kari, A.;Goudarzi, A.;Laefer, D.F.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1215-1237
    • /
    • 2015
  • The majority of connections in moment resisting frames are considered as being fully-rigid. Consequently, the real behavior of the connection, which has some level of flexibility, is ignored. This may result in inaccurate predictions of structural response. This study investigates the influence of flexibility of the extended end-plate connections in the steel moment frames. This is done at two levels. First, the actual micro-behavior of extended end-plate moment connections is explored with respect to joint flexibility. Then, the macro-behavior of frames with end-plate moment connections is investigated using modal, nonlinear static pushover and incremental dynamic analyses. In all models, the P-Delta effects along with material and geometrical nonlinearities were included in the analyses. Results revealed considerable differences between the behavior of the structural frame with connections modeled as fully-rigid versus those when flexibility was incorporated, specifically difference occurred in the natural periods, strength, and maximum inter-story drift angle.

Analytical Models of Beam-Column joints in a Unit Modular Frame (단위 모듈러 구조체의 보-기둥 접합부 해석 모델)

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.663-672
    • /
    • 2014
  • Recently, modular structural systems have been applicable to building construction since they can significantly reduce building construction time. They consists of several unit modular frames of which each beam-column joint employs an access hole for connecting unit modular frames. Their structural design is usually carried out under the assumption that their load-carrying mechanism is similar to that of a traditional steel moment-resisting system. In order to obtain the validation of this assumption, the cyclic characteristics of beam-column joints in a unit modular frame should be investigate. This study carried out finite element analyses(FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities and their joints are classified into partial moment connections. Also, this study develops a simple spring model for earthquake nonlinear analyses and suggests the Ramberg-Osgood hysteretic rule to capture the cyclic response of unit modular frames.

Analysis of stress dispersion in bamboo reinforced wall panels under earthquake loading using finite element analysis

  • Kumar, Gulshan;Ashish, Deepankar K.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.451-461
    • /
    • 2018
  • Present study is mainly concerned about the idea of innovative utilization of bamboo in modern construction. Owing to its compatible mechanical properties, a beneficial effect of its use in reinforced concrete (RC) frame infills has been observed. In this investigation, finite element analyses have been performed to examine the failure pattern and stress distribution pattern through the infills of a moment resisting RC frame. To validate the pragmatic use of bamboo reinforced components as infills, earthquake loading corresponding to Nepal earthquake had been considered. The analysis have revealed that introduction of bamboo in RC frames imparts more flexibility to the structure and hence may causes a ductile failure during high magnitude earthquakes like in Nepal. A more uniform stress distribution throughout the bamboo reinforced wall panels validates the practical feasibility of using bamboo reinforced concrete wall panels as a replacement of conventional brick masonry wall panels. A more detailed analysis of the results have shown the fact that stress concentration was more on the frame components in case of frame with brick masonry, contrary to the frame with bamboo reinforced concrete wall panels, in which, major stress dispersion was through wall panels leaving frame components subjected to smaller stresses. Thus an effective contribution of bamboo in dissipation of stresses generated during devastating seismic activity have been shown by these results which can be used to concrete the feasibility of using bamboo in modern construction.

The effects of construction related costs on the optimization of steel frames

  • Choi, Byoung-Han;Gupta, Abhinav;Baugh, John W. Jr.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.31-51
    • /
    • 2012
  • This paper presents a computational study that explores the design of rigid steel frames by considering construction related costs. More specifically, two different aspects are investigated in this study focusing on the effects of (a) reducing the number of labor intensive rigid connections within a frame of given geometric layout, and (b) reducing the number of different member section types used in the frame. A genetic algorithm based optimization framework searches design space for these objectives. Unlike some studies that express connection cost as a factor of the entire frame weight, here connections and their associated cost factors are explicitly represented at the member level to evaluate the cost of connections associated with each beam. In addition, because variety in member section types can drive up construction related costs, its effects are evaluated implicitly by generating curves that show the trade off between cost and different numbers of section types used within the frame. Our results show that designs in which all connections are considered to be rigid can be excessively conservative: rigid connections can often be eliminated without any appreciable increase in frame weight, resulting in a reduction in overall cost. Eliminating additional rigid connections leads to further reductions in cost, even as frame weight increases, up to a certain point. These complex relationships between overall cost, rigid connections, and member section types are presented for a representative five-story steel frame.