• Title/Summary/Keyword: moment problems

Search Result 425, Processing Time 0.032 seconds

A measuring system for determination of a cantilever beam support moment

  • Loktionov, Askold P.
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.431-439
    • /
    • 2017
  • This investigation is aimed to develop a model of experimental-computation determination of a support moment of a cantilever beam loaded with concentrated force at its end including the optimal choice of coordinates of deflection data points and parameters of transformation of deflection data in case of insufficient accuracy of the assignment of initial parameters (support settlement, angle of rotation of the bearing section) and cantilever beam length. The influence of distribution and characteristics of sensors on the cantilever beam on the accuracy of determining the support moment which improves in the course of transition from the uniform distribution of sensors to optimal non-uniform distribution is shown. On the basis of the theory of inverse problems the method of transformation reduction at numerical differentiation of deflection functions has been studied. For engineering evaluation formulae of uncertainty estimate to determine a support moment of a cantilever beam at predetermined uncertainty of measurements using sensors have been obtained.

Real-time Unbalance Moment Compensation Method for Line of Sight(LOS) Stabilization Control System (시선안정화 제어시스템의 실시간 불균형 모멘트 보상기법)

  • Jo, Sihun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.323-330
    • /
    • 2016
  • This paper describes real-time unbalance moment compensation method for line of sight(LOS) stabilization control systems. The factors of system inertia, frictions and unbalance moment affect the control accuracy of drive systems that are equipped to on the move(OTM) platforms requiring LOS stabilization function. In case of the unbalance moment among those factors is continuously changed as variation of relative angle between gravity vector and drive torque vector. Then, consideration of the effect in real-time is very complicate. Therefore, its effect should be designed to be minimized, however, designing it almost zero is impossible in real condition. In other words, it is hard to achieve target performance overcoming stability issue of highly unbalanced systems. To solve these problems, this paper proposes calculation method of unbalance moment by using measured sensor data for LOS stabilization control and its use for control compensation. Also, kinematical converting process and control structure for compensation are explained. The effectiveness of the proposed method as variation of unbalance moment is verified under simulation circumstance modeled by assuming LOS control system with 2-axis gimbal structure.

Moment redistribution of continuous composite I-girder with high strength steel

  • Joo, Hyun Sung;Moon, Jiho;Sung, Ik-Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.873-887
    • /
    • 2015
  • The continuous composite I-girder should have a sufficient rotation capacity (or ductility) to redistribute the negative bending moment into an adjacent positive bending moment region. However, it is generally known that the ductility of the high strength steel is smaller than that of conventional steel, and application of high strength steel can cause ductility problems in a negative moment region of the I-girder. In this study, moment redistribution of the continuous composite I-girder with high strength steel was studied, where high strength steel with yield stress of 690 MPa was considered (the ultimate stress of the steel was 800 MPa). The available and required rotation capacity of the continuous composite I-girder with high strength steel was firstly derived based on the stress-strain curve of high strength steel and plastic analysis, respectively. A large scale test and a series of non-linear finite element analysis for the continuous composite I-girder with high strength steel were then conducted to examine the effectiveness of proposed models and to investigate the effect of high strength steel on the inelastic behavior of the negative bending moment region of the continuous composite I-girder with high strength steel. Finally, it can be found that the proposed equations provided good estimation of the requited and available rotation capacity of the continuous composite I-girder with high strength steel.

ANALYSIS OF A STRATIFIED NATURAL CONVECTION FLOW WITH THE SECOND-MOMENT CLOSURE (이차모멘트 난류모델을 사용한 성층화된 자연대류 유동 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.55-61
    • /
    • 2007
  • A computational study on a strongly stratified natural convection is performed with the elliptic blending second-moment closure. The turbulent heat flux is treated by both the algebraic flux model (AFM) and the differential flux model (DFM). Calculations are performed for a turbulent natural convection in a square cavity with conducting top and bottom walls and the calculated results are compared with the available experimental data. The results show that both the AFM and DFM models produce very accurate solutions with the elliptic-blending second-moment closure without invoking any numerical stability problems. These results show that the AFM and DFM models for treating the turbulent heat flux are sufficient for this strongly stratified flow. However, a slight difference between two models is observed for some variables.

Conditional moment closure modeling in turbulent nonpremixed combustion (난류확산연소에서의 conditional moment closure modeling)

  • Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.24-32
    • /
    • 2000
  • A brief introduction is given on the conditional moment closure model for turbulent nonpremixed combustion. It is based on the transport equations derived through a rigorous mathematical procedure for the conditionally averaged quantities and appropriate modeling forms for conditional scalar dissipation rate, conditional mean velocity and reaction rate. Examples are given for prediction of NO and OH in bluffbody flames, soot distribution in jet flames and autoignition of a methane/ethane jet to predict the ignition delay with respect to initial temperature, pressure and fuel composition. Conditional averaging may also be a powerful modeling concept in other approaches involved in turbulent combustion problems in various different regimes.

  • PDF

Conditional Moment Closure Modeling in Turbulent Nonpremixed Combustion (난류확산연소에서의 Conditional Moment Closure Modeling)

  • Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.9-17
    • /
    • 2000
  • A brief introduction is given on the conditional moment closure model for turbulent nonpremixed combustion. It is based on the transport equations derived through a rigorous mathematical procedure for the conditionally averaged quantities and appropriate modeling forms for conditional scalar dissipation rate, conditional mean velocity and reaction rate. Examples are given for prediction of NO and OR in bluffbody flames, soot distribution in jet flames and autoignition of a methane/ethane jet to predict the ignition delay with respect to initial temperature, pressure and fuel composition. Conditional averaging may also be a powerful modeling concept in other approaches involved in turbulent combustion problems in various different regimes.

  • PDF

Moment of Inertia of Gas as a Source of Added Gravitational Field in Galaxies

  • Portnov, Yuriy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.59-65
    • /
    • 2022
  • In this paper we propose a new perspective for explaining galaxy rotation curves. We conjecture that there is a gravitational moment of inertia which, together with gravitational mass, contributes to the gravitational potential. We substantiate a formula for the potential created by the moment of inertia. We validate our model by computing orbital rotation velocities for several galaxies and showing that computed rotation velocities correspond to the observed ones. Our proposed approach is capable of accounting for constant gas velocities outside of a galactic disc without relying on the dark matter hypothesis. Furthermore, it addresses several problems faced by the application of the dark matter hypothesis, e.g., the absence of inward collapse of dark matter into a galaxy, the spherical distribution of dark matter around galaxies, and absence of traces of the effect of dark matter in two ultra-diffuse galaxies, NGC 1052-DF2, and NGC 1052-DF4.

Nonuniqueness in Inverse Scattering Problems (역산란 문제에서의 비유연성)

  • 김세윤;라정웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1317-1321
    • /
    • 1989
  • The nonuniqueness of solutions to inverse scattering problems for the reconstruction of cross sectional permitivity distributions on dielectric cylinder is illustrated in view of numerical analysis based on the spectral inverse scattering scheme with the moment-method procedures. It is also shown that some additional treatmenents such as multiple measurements, various incidences, etc. are not effective to assure the uniqueness.

  • PDF

Solving design optimization problems via hunting search algorithm with Levy flights

  • Dogan, Erkan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.351-368
    • /
    • 2014
  • This study presents a hunting search based optimum design algorithm for engineering optimization problems. Hunting search algorithm is an optimum design method inspired by group hunting of animals such as wolves, lions, and dolphins. Each of these hunters employs hunting in a different way. However, they are common in that all of them search for a prey in a group. Hunters encircle the prey and the ring of siege is tightened gradually until it is caught. Hunting search algorithm is employed for the automation of optimum design process, during which the design variables are selected for the minimum objective function value controlled by the design restrictions. Three different examples, namely welded beam, cellular beam and moment resisting steel frame are selected as numerical design problems and solved for the optimum solution. Each example differs in the following ways: Unlike welded beam design problem having continuous design variables, steel frame and cellular beam design problems include discrete design variables. Moreover, while the cellular beam is designed under the provisions of BS 5960, LRFD-AISC (Load and Resistant Factor Design-American Institute of Steel Construction) is considered for the formulation of moment resisting steel frame. Levy Flights is adapted to the simple hunting search algorithm for better search. For comparison, same design examples are also solved by using some other well-known search methods in the literature. Results reveal that hunting search shows good performance in finding optimum solutions for each design problem.

A Study on the Behavior of Prestressed Concrete Storage Tanks under Cryogenic Conditions (프리스트레스트 콘크리트 저장 탱크의 저온 조건에서의 거동 연구)

  • 양인환;고재일;김우진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.363-366
    • /
    • 1999
  • This paper describes the behavior of prestressed concrete storage tanks under cryogenic temperatures by thermal stress analysis. In concrete tanks to store up LNG, a thermal shock can occur over a global area resulting from the sudden filling of the outer tank with cryogenic storage contents. Analysis results show that internal surface of concrete tank is cooled down rapidly. Tank is subjected mostly to thermal constraint moment due to temperature gradient across its section. Constraint moment may cause tensile stresses beyond tensile strength in the wall. Problems related with concrete cracking due to temperature gradient have been considered.

  • PDF