• 제목/요약/키워드: moment equations

검색결과 528건 처리시간 0.028초

Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS

  • Duman, Suleyman;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제7권4호
    • /
    • pp.435-460
    • /
    • 2017
  • The main objective of this study is to investigate the turning and zig-zag maneuvering performance of the well-known naval surface combatant DTMB (David Taylor Model Basin) 5415 hull with URANS (Unsteady Reynolds-averaged Navier-Stokes) method. Numerical simulations of static drift tests have been performed by a commercial RANS solver based on a finite volume method (FVM) in an unsteady manner. The fluid flow is considered as 3-D, incompressible and fully turbulent. Hydrodynamic analyses have been carried out for a fixed Froude number 0.28. During the analyses, the free surface effects have been taken into account using VOF (Volume of Fluid) method and the hull is considered as fixed. First, the code has been validated with the available experimental data in literature. After validation, static drift, static rudder and drift and rudder tests have been simulated. The forces and moments acting on the hull have been computed with URANS approach. Numerical results have been applied to determine the hydrodynamic maneuvering coefficients, such as, velocity terms and rudder terms. The acceleration, angular velocity and cross-coupled terms have been taken from the available experimental data. A computer program has been developed to apply a fast maneuvering simulation technique. Abkowitz's non-linear mathematical model has been used to calculate the forces and moment acting on the hull during the maneuvering motion. Euler method on the other hand has been applied to solve the simultaneous differential equations. Turning and zig-zag maneuvering simulations have been carried out and the maneuvering characteristics have been determined and the numerical simulation results have been compared with the available data in literature. In addition, viscous effects have been investigated using Eulerian approach for several static drift cases.

Bending of steel fibers on partly supported elastic foundation

  • Hu, Xiao Dong;Day, Robert;Dux, Peter
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.657-668
    • /
    • 2001
  • Fiber reinforced cementitious composites are nowadays widely applied in civil engineering. The postcracking performance of this material depends on the interaction between a steel fiber, which is obliquely across a crack, and its surrounding matrix. While the partly debonded steel fiber is subjected to pulling out from the matrix and simultaneously subjected to transverse force, it may be modelled as a Bernoulli-Euler beam partly supported on an elastic foundation with non-linearly varying modulus. The fiber bridging the crack may be cut into two parts to simplify the problem (Leung and Li 1992). To obtain the transverse displacement at the cut end of the fiber (Fig. 1), it is convenient to directly solve the corresponding differential equation. At the first glance, it is a classical beam on foundation problem. However, the differential equation is not analytically solvable due to the non-linear distribution of the foundation stiffness. Moreover, since the second order deformation effect is included, the boundary conditions become complex and hence conventional numerical tools such as the spline or difference methods may not be sufficient. In this study, moment equilibrium is the basis for formulation of the fundamental differential equation for the beam (Timoshenko 1956). For the cantilever part of the beam, direct integration is performed. For the non-linearly supported part, a transformation is carried out to reduce the higher order differential equation into one order simultaneous equations. The Runge-Kutta technique is employed for the solution within the boundary domain. Finally, multi-dimensional optimization approaches are carefully tested and applied to find the boundary values that are of interest. The numerical solution procedure is demonstrated to be stable and convergent.

횡방향 재하 말뚝 주변의 널말뚝에 관한 변수연구 (A Parametric Study of Sheet Pile Wall Near the Laterally Loaded Pile)

  • 윤희정
    • 한국지반환경공학회 논문집
    • /
    • 제13권8호
    • /
    • pp.35-43
    • /
    • 2012
  • 널말뚝을 해안지역이나 도심지역에 건설하는 경우 주변에 위치한 횡방향 재하 말뚝의 영향권 내에 존재하게 되는 경우가 발생하게 되지만, 기존 설계방법에서는 이러한 영향에 대하여 고려하고 있지 않다. 본 연구를 통해 말뚝에 횡방향 하중이 재하되는 경우 근접한 널말뚝에 미치는 영향을 정량적으로 예측할 수 있는 방법을 제안하고자 한다. 상용프로그램인 ABAQUS를 이용하여 3차원 유한요소 모델을 만들었으며 지반 구성모델로는 Drucker-Prager 모델, 널말뚝과 말뚝은 선형탄성으로 거동하도록 모사하였다. 널말뚝의 휨강성, 말뚝과 널말뚝 간의 거리, 굴착깊이, 그리고 지반의 탄성계수 등 총 4가지 변수들을 사용하여 횡방향 재하 말뚝이 주변 널말뚝에 미치는 영향을 분석해 보았다. 수치해석 결과를 이용하여 널말뚝에 발생하는 최대 횡방향 변위 및 휨모멘트를 측정할 수 있는 간단한 식을 제시하였다.

특별직교이방성 적층판의 고유진동수에 대한 형상비의 영향 (The Influence of the Aspect Ratio on the Natural Frequency of the Specially Orthotropic Laminated Plates)

  • 한봉구;김덕현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권6호
    • /
    • pp.219-225
    • /
    • 2011
  • 건설기술자들에게는 첨단 복합재료구조에 대한 이론이 너무 어려워서 간단하면서도 쉽게 적용할 수 있는 정확한 방법을 필요로 하고 있다. 단순지지된 적층판을 특별직교이방성 적층판 이론에 의하여 해석하였다. 본 연구에서는 형상비를 1 : 1 ~ 1 : 5 까지 변화시켜가며 해석을 수행하였다. 대부분의 교량이나 건물의 상판은 형상비가 큰 경우가 많은데, 이런 구조물의 평형방정식에 대한 종방항 모멘트항($M_x$)의 영향은 매우 작아서, 더욱 간단한 해석이 가능하다. 본 논문에서는 특별직교이방성 적층판의 고유진동수에 대한 형상비의 영향을 연구하였으며 이 방법을 사용하면 충분히 정확한 값을 산출할 수 있다. 본 논문의 연구의 결과는 단순지지된 특별직교이방성 적층판의 해석에 이용할 수 있다.

Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.323-333
    • /
    • 2016
  • In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the $1^{st}$ lunar orbit insertion (LOI) maneuver of the Korea Pathfinder Lunar Orbiter (KPLO) mission. During the early design phase of the system, associate analysis is an essential design factor as the $1^{st}$ LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the $1^{st}$ LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the $1^{st}$ elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC) maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground control center, are expected to be prepared and established based on the current results, including a contingency trajectory design plan.

A Novel High Precision Electromagnetic Suspension for Long-Stroke Movement and Its Performance Evaluation

  • Lee, Ki-Chang;Moon, Seokhwan;Ha, Hyunuk;Park, Byoung-Gun;Kim, Ji-Won;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.514-522
    • /
    • 2014
  • A new type of high precision electromagnetic suspension (EMS) which can support heavy tray along long stroke rail is proposed in this paper. Compared with the conventional EMS, the suggested moving-core typed EMS has the levitation electromagnets (EMs) on the fixed rail. This scheme has high load capability caused by iron-core and enables simple tray structure. Also it does not have precision degradation caused by heat generation from EMs, which is a drawback of conventional EMS. With these merits, the proposed EMS can be an optimal contactless linear bearing in next generation flat panel display (FPD) manufacturing process if the ability of long stroke movement is proved. So a special Section Switching Algorithm (SSA) is derived from the resultant force and moment equations of the levitated tray which enables long stroke movement of the tray. In order to verify the feasibility of the suggested SSA, a simple test-setup of the EMS with 2 Section-changes is made up and servo-controlled in the simulation and experiment. The simulation shows the perfect changeover the EMs, and the experiment shows overall control performance of under ${\pm}40{\mu}m$ gap deviations. These results reveal that the newly suggested contactless linear bearing can simultaneously achieve high load capability and precision gap control as well as long stroke.

균일모멘트를 받는 조밀단면 T형보의 횡-비틀림 좌굴강도 기준식에 관한 연구 (A Study on Lateral-Torsional Buckling Strength Equation of Compact T-Beam Subjected to Pure Bending)

  • 박종섭;김용희;이규세
    • 한국산학기술학회논문지
    • /
    • 제10권8호
    • /
    • pp.2038-2043
    • /
    • 2009
  • 본 연구는 유한요소해석을 이용하여 순수 휨이 작용하는 T형 단면보의 탄성 횡-비틀림 좌굴강도에 대해 기술하고 있다. 유한요소해석을 통해 얻어진 결과는 AISC-LRFD(2007)설계기준과 비교되었으며, 검토결과 AISC-LRFD 제안식을 이용하여 얻어지는 값들이 유한요소해석 결과보다 큰 값을 나타내고 있어 안전측 설계를 유도하고 있지 못하고 있다. 이에 본 연구에서는 수정된 설계 계산식을 제안하고 예제를 통해 활용성을 검토하였다. 새로운 설계 계산식은 T형보의 횡-비틀림 좌굴강도 산정에 쉽게 적용될 수 있으며, 다양한 하중이 작용하는 경우 T형보의 연구에 적극 활용 될 수 있을 것이다.

연화 스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구 (A Study on Shear Strength Prediction for Reinforced High-Strength Concrete Deep Beams Using Softened Strut-and-Tie Model)

  • 김성수;이우진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권4호
    • /
    • pp.159-169
    • /
    • 2003
  • 춤이 깊은 보 설계를 위한 현행 ACI 기준은 콘크리트 압축강도 40MPa이하의 실험결과를 바탕으로 한 반 경험적인 제안식으로서 40MPa이상 고강도콘크리트의 사용이 증가됨에 따라 현행 기준의 고강도 깊은 보에 대한 적용성 평가가 요구되고 있다. 고강도 깊은 보의 전단강도 예측을 위하여 본 연구에서는 콘크리트강도와 모멘트효과를 고려한 수정 연화 스트럿-타이 모델을 제시하였다. 제안모델 평가를 위하여 4개의 시험체를 제작하였으며, 콘크리트 압축강도 49~78MPa로 제작된 74개의 기존 실험 데이터를 적용하여 ACI 318-99 11.8기준, ACI 318-02 부록 A STM의 해석결과와 비교 평가하였다.

Optimal design for the reinforced concrete circular isolated footings

  • Lopez-Chavarria, Sandra;Luevanos-Rojas, Arnulfo;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo;Velazquez-Santillan, Francisco
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.273-294
    • /
    • 2019
  • In this paper is presented the minimum cost (optimal design) for reinforced concrete circular isolated footings based on an analytic model. This model considers a load and two moments in directions of the X and Y axes, and the pressure has a variation linear, these are the effects that act on the footing. The minimum cost (optimal design) and the Maple program are shown in Flowcharts. Two numerical experiments are shown to obtain the minimum cost design of the two materials that are used for a circular footing supporting an axial load and moments in two directions in accordance to the code of the ACI (American Concrete Institute), and it is compared against the current design (uniform pressure). Also, the same examples are developed through the normal procedure to verify the minimum cost (optimal design) presented in this document, i.e., the equations of moment, bending shear and punching shear are used to check the thickness, and after, the steel areas of the footing are obtained, and it is compared against the current design (uniform pressure). Results section show that the optimal design is more accurate and more economical than to any other model. Therefore, it is concluded that the optimized design model presented in this paper should be used to obtain the minimum cost design for the circular isolated footings.

A new method for infill equivalent strut width

  • Tabeshpour, Mohammad Reza;Arasteh, Arash Mahdipour
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.257-268
    • /
    • 2019
  • Infills are as important members in structural design as beams, columns and braces. They have significant effect on structural behavior. Because of lots of variables in infills like material non-linear behavior, the interaction between frames and infill, etc., the infills performance during an earthquake is complicated, so have led designers do not consider the effect of infills in designing the structure. However, the experimental studies revealed that the infills have the remarkable effect on structure behavior. As if these effects ignored, it might occur soft-story phenomena, torsion or short-column effects on the structures. One simple and appropriate method for considering the infills effects in analyzing, is replacing the infills with diagonal compression strut with the same performance of real infill, instead of designing the whole infill. Because of too many uncertainties, codes and researchers gave many expressions that were not as the same as the others. The major intent of this paper is calculation the width of this diagonal strut, which has the most characteristics of infill. This paper by comprehensive on different parameters like the modulus of young or moment of inertia of columns presents a new formula for achieving the equivalent strut width. In fact, this new formula is extracted from about 60 FEM analyses models. It can be said that this formula is very efficient and accurate in estimating the equivalent strut width, considering the large number of effective parameters relative to similar relationships provided by other researchers. In most cases, the results are so close to the values obtained by the FEM. In this formula, the effect of out of plane buckling is neglected and this formula is used just in steel structures. Also, the thickness of infill panel, and the lateral force applied to frame are constant. In addition, this new formula is just for modeling the lateral stiffness. Obtaining the nearest response in analyzing is important to the designers, so this new formula can help them to reach more accurate response among a lot of experimental equations proposed by researchers.