• Title/Summary/Keyword: molten steel

Search Result 240, Processing Time 0.025 seconds

Effects of Silicon on Galvanizing Coating Characteristics in Dual Phase High Strength Steel (복합조직형 고강도 용융아연 도금강판의 도금특성에 미치는 강중 Si의 영향)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Shin, Kwang-Soo;Lee, Joon-Ho;Sohn, Ho-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.423-432
    • /
    • 2009
  • In the galvanizing coating process, the effects of the silicon content on the coatability and wettability of molten zinc were investigated on Dual-Phase High Strength Steels (DP-HSS) with various Si contents using the galvanizing simulator and dynamic reactive wetting systems. DP-HSS showed good coatability and a well-developed inhibition layer in the range of Si content below 0.5 wt%. Good coatability was the results of the mixed oxide $Mn_{2}SiO_{4}$, being formed by the selective oxidation on the surface, with a low contact angle in molten zinc and a large fraction of oxide free surface that provided a sufficient site for the molten zinc to wet and react with the substrate. On the other hand, with more than 0.5 wt%, DP-HSS exhibited poor coatability and an irregularly developed inhibition layer. The poor coatability was due to the poor wettability that resulted from the development of network-type layers of amorphous ${SiO}_{2}$, leading to a high contact angle in molten zinc, on the surface.

A Study on Durability of Sprayed Coating Layer in the Molten Zn-0.2% Al Alloy Bath (아연-0.2%알루미늄합금 용융도금액 중에서 용사층의 내구성에 관한 연구)

  • 강태영;임병문;최장현;김영식
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.512-519
    • /
    • 2001
  • Sink roll has been used in molten Zn-0.2%Al alloy bath of continuous galvanizing line in sinking and stabilizing process of the steel strip in molten metal bath. In this process, although the scraper scraps off the sink roll surface, the dross compounds is builded up on the sink roll surface and the life time of the sink roll is shorten by the dross compounds. The present study was investigated the application of the spray coating layer on sink roll body for improving durability In molten Zn-0.2%Al alloy. Through the durability tests in molten Zn-0.2%Al alloy with various ceramic and cermet coating layer, the optimum bond and top coating material was obtained. As the results, the system of STS430F base metal, WC-l7Co bond and $ZrO_2-SiO_2$ top coating was clarified to be the best quality of durability in molten Zn-0.2%Al alloy.

  • PDF

The Formation Behavior of Non-metallic Inclusion in the Ce-added Hyper Duplex STS (Hyper Duplex STS 중 Ce 첨가 시 비금속개재물 생성거동)

  • Hong, S.H.;Jang, P.Y.;Park, Y.M.;Byun, S.M.;Kim, K.T.;You, B.D.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.311-319
    • /
    • 2010
  • Rare earth metal Ce has a relatively low melting point and high specific gravity. Because of its significantly high affinity to oxygen, nitrogen and sulfur, it is highly usable as a steel refining agent. However, because Ce compound has relatively high specific gravity, it is difficult to be separated from molten steel through floatation, and it degrades the purity of molten steel, or may clog the nozzle in continuous casting. Such problem may be solved by using an appropriate deoxidation agent together with Ce and settling molten steel sufficiently after refining. Thus a fundamental study in the formation behavior of non-metallic inclusion in Ce added Hyper Duplex STS melts was investigated. The addition amount of Ce, melt temperature were considered as experimental variables. A main non-metallic inclusion in mother alloy is 51(wt%MnO) - 27.6(wt%SiO$_2$)- 10.9(wt%$Cr_2O_3$). Non-metallic inclusion was dramatically decreased and the particle size was fined as the amount of Ce increased. Moreover (%MnO) and (%SiO$_2$) of non-metallic inclusion were decreased. But (%$Al_2O_3$)were relatively increased. The number of non-metallic inclusion were decreased and the large particle size were increased by increasing the temperature of molten steel.

Wear Behavior of Die Steel in Molten Aluminum Alloy (용융 알루미늄 합금에 의한 다이캐스팅용 금형강의 용손거동)

  • Bae, Sang-Ho;Kang, Bok-Hyun;Kim, Ki-Young;Kim, Do-Hyang;Choi, Gun;Choi, Bae-Ho
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.119-123
    • /
    • 2008
  • Wear test on two die steels for aluminum die casting was carried out by dipping and rotating the specimens into the molten aluminum maintained $680^{\circ}C{\sim}780^{\circ}C$. The rotating speed of the specimen was $4.5rpm{\sim}20.0rpm$. Diffusion layer was formed between the die steel and molten aluminum, and became thicker with dipping time. Wear rate was not proportional with the thickness of the diffusion layer, but was closely related to the density of the diffusion layer. Wear rate was little affected by the kind of die steel and by the microstructure such as martensite, tempered martensite, and pearlite. Specimen with nitrided surface showed good wear resistance, and its wear rate was decreased with increase in the thickness of nitrided layer. While whole surface was worn in heat treated specimens, wear of nitrided specimens was proceeded by pitting partially.

Hydrogen Behavior in the Steelmaking Process (제강공정에서 수소의 거동)

  • Shim, Sang-chul;Cho, Jung-wook;Hwang, Sang-taek;Kim, Kwang-chun
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.662-671
    • /
    • 2008
  • The behavior of hydrogen in the steel making process was investigated. The relation between the composition of ladle slag and hydrogen concentration in molten steel was considered. The hydrogen distribution ratio between ladle slag and molten steel was increased with increasing basicity of the slag; it was about 20 when the basicity of slag was 15. Hydroxyl capacity measured from the hydrogen distribution ratio between slag and the molten steel was comparatively corresponding to the value of hydroxyl capacity measured by the equilibrium reaction of slag and $H_2O$ gas. However, it is considerably different from the value calculated by regular solution model. The influence of hydrogen on a sticking type breakout is considered. The effect of hydrogen and $H_2O$ gas on the crystallization behavior of mold powder was investigated by DHTT (Dual hot thermocouple technique). As a result, it was proved that mold powder could be crystallized by $H_2O$ gas in the atmosphere. Therefore, it is concluded that $H_2O$ gas in the atmosphere can be a possible cause of the sticking type breakout that occasionally occurs in the continuous casting process.

Modeling and stable startup strategy for strip-caster

  • Lee, Dukman;Lee, Jin S.;Kim, Y.H.;Lee, D.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.319-323
    • /
    • 1996
  • A new steel-making process, strip-casting, is introduced. The strip-casting is a new technique making the thin steel strip from the molten steel directly without resorting to repetitive reheating and hot-rolling required in a conventional steel-making method. This paper derives the mathematical model of strip caster, proposes a control strategy for stable startup operation and a fuzzy decision making rule for automatic control mode change in strip-casting process.

  • PDF

Corrosion Analysis of Ni alloy according to the type of molten metal (용융아연도금욕에 적용되는 용탕에 따른 Ni합금의 부식성 분석)

  • Baek, Min-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.459-463
    • /
    • 2017
  • Hot dip galvanizing in the steel plant is one of the most widely used methods for preventing the corrosion of steel materials including structures, steel sheets, and materials for industrial facilities. While hot dip galvanizing has the advantage of stability and economic feasibility, it has difficulty in repairing equipment and maintaining the facilities due to high-temperature oxidation caused by Zn Fume where molten zinc used in the open spaces. Currently, SM45C (carbon steel plate for mechanical structure, KS standard) is used for the equipment. If a part of the equipment is resistant to high temperature and Zn fume, it is expected to improve equipment life and performance. In this study, the manufactured Ni alloy was tested for its corrosion resistance against Zn fume when it was used in the hot dip galvanizing equipment in the steel plant. Two kinds of materials currently used in the equipment, new Ni alloy and Inconel(typical corrosion-resistant Ni alloy), were selected as the reference groups. Two kinds of molten metal were used to confirm the corrosion of each alloy according to the molten metal. Zn fume was generated by bubbling Ar gas from molten Zn in a furnace($500{\sim}700^{\circ}C$) and the samples were analyzed after 30 days. After 30 days, the specimens were taken out, the oxide layer on the surface was confirmed with an optical microscope and SEM, and the corrosion was confirmed using a potentiodynamic polarization test. Corrosion depends on the type of molten metal.

Corrosion mechanism of zirconia/graphite SEN by molten steel and slag (용강 및 슬래그에 의한 지르코니아/흑연계 침지노즐의 침식기구)

  • Sunwoo, Sik;Kim, Hwan;Lee, Jong-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.226-232
    • /
    • 2000
  • Corrosion mechanisms by molten steel and slag were investigated in the zirconia/graphite composite as a material of submerged entry nozzle (SEN) using for producing high quality steel. Most of corrosions were started by the dissolution of zirconia particles into molten steel and oxidation of graphite, but subsequently three modes of corrosion were observed. Firstly, the penetration of slag into zirconia matrix was induced to the diffusion of stabilizing agent outward cubic zirconia grains, and the destabilization of cubic to fine monoclinic zirconia particles, which is enhanced to the decomposition and dissolution of them into slag. Secondly, molten slag penetrates into large cubic zirconia particles along grain boundary and decomposed them to fine cubic grains, which is also enhanced to the dissolution of zirconia grains into slag. Lastly, reaction between carbon and cubic zirconia was formed porous ZrC and enhanced the dissolution of it into slag.

  • PDF

Study on the NiAl Coating for Corrosion Resistance of Stainless Steel in Molten Carbonate Salt (용융탄산염에 대한 스테인레스강의 내식성 향상을 위한 NiAl 피복에 관한 연구)

  • Hwang, Eung-Rim;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.76-80
    • /
    • 1997
  • '4 NiAl coating process was applied on 316 stainless steel to retard the corrosion of the wet- seal area of separator for the molten carbonate fuel cell. The Nit11 phasc on the stainless steel substrate could be formed by pre-coating with Ni, plated with A1 and ther, heat treated at $800^{\circ}C$ for 3 hr in $H_2/N_2$ gas atmosphere. The corrosion protection behavior of YiAl coating layer was stuilied under immersion condition in molten cxhonate salt($62^{m}/_{o}Li_2CO_3-38^{m}/_{o}/K_{2}CO_{3}$) at $650^{\circ}C$. The NiAl coating layer ticposited on the AiSi 316 stainless steel had high corrosion resistance in molten carbor. dte salt. The corrosion resistance of XiAl (~~jpoared to be associated with the .A1 oxide formed on the surface of coating layer.

  • PDF

Analysis of Temperature of Molten Aluminium Holding Furnace and Stress of Substructure Frame (알루미늄 용탕 보온로의 열해석 및 하부 구조물의 강도해석)

  • Park, Sang-Soo;Kang, Chung-Gil;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.129-136
    • /
    • 2005
  • The demand on thermos furnace of Al molten metal has recently been getting higher and higher according to the increase in use of Al and Al alloys. This study considers the estimation of the thermal and mechanical stability in the thermos furnace for Al casting. It is executed through the analysis of heat transfer on the refractory material and heat stress on each steel shell. Also, the estimation of structural stability was appraised through the strength analysis of the lower structure. In result, the temperature of steel shell rose to 320.15K and its elastic deformation was about 1.5mm. The elastic deformation of the lower structure was about 0.66mm. As a result of it, the data obtain from the analysis in this study are regarded as stable value on considering that the size of the furnace is 2500mm.