• Title/Summary/Keyword: molten salt

Search Result 379, Processing Time 0.023 seconds

Corrosion Behavior of Austenitic Alloys in the Molten Salts of $LiCl-Li_2O_2$ ($LiCl-Li_2O_2$ 용융염계에서 오스테나이트계 합금의 부식거동)

  • 오승철;윤기석;임종호;조수행;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.373-378
    • /
    • 2003
  • As a part of assessment of the structural material for the molten salt handling system, corrosion behavior of austenitic alloys, Fe-base and Ni-base in the molten salt of $LiCl-Li_2O_2$ was investigated in the range of temperature; 650~$725^{\circ}C$, time; 24- 168h, $Li_2O$; 3wt%, mixed gas; Ar-10%$O_2$. In the molten salt of $LiCl-Li_2O_2$, Ni-base alloys showed higher corrosion resistance than Fe-base alloys. Fe-base alloy with low Fe and high Ni contents exhibited better corrosion resistance. The scales of $Cr_2O_3$, $FeCr_2O_4$ on Fe-base alloys were showed, and $Cr_2O_3$, $NiFe_2O_4$ on Ni-base alloys were also showed.

  • PDF

The Effect of Yttrium on Corrosion Behavior of NiAl Intermetallic Compound in the Molten Carbonate Salt (용융탄산염내에서의 NiAl합금의 내식성에 미치는 Yttrium의 첨가 영향)

  • Hwang, Eung-Rim;Lee, Dae-Hui;Kim, Seon-Jin;Kang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.685-692
    • /
    • 1998
  • Since a wet-seal area of Molten Carbonate Fuel Cell (MCFC) operated at $650^{\circ}C$ is exposed to severe environment, a life-time of MCFC is influenced by the corrosion resistance of separator. In order to improve corrosion resistance of 316L stainless steel used as separator material, AI- base alloy such as NiAI has been widely used as coat¬ing material on the wet-seal area. The purpose of this work is to develope a more protective coating material by adding yttrium on NiAI alloy. An immersion test and a polarization test were performed in molten carbonate salt at $650^{\circ}C$ to estimate corrosion resistance of the NiAI alloy and the NiAl/Y alloys with up to L5at% yttrium. NiAl/Y alloys showed better corrosion resistance than NiAI alloy. We found that more than 0.7 at% yttrium was required to improve the corrosion resistance of NiAI alloy in molten carbonate salt at $650^{\circ}C$.

  • PDF

Very Efficient Nucleophilic Aromatic Fluorination Reaction in Molten Salts: A Mechanistic Study

  • Jang, Sung-Woo;Park, Sung-Woo;Lee, Byoung-Se;Chi, Dae-Yoon;Song, Choong-Eui;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.881-884
    • /
    • 2012
  • We report a quantum chemical study of an extremely efficient nucleophilic aromatic fluorination in molten salts. We describe that the mechanism involves solvent anion interacting with the ion pair nucleophile $M^+F^-$(M = Na, K, Rb, Cs) to accelerate the reaction. We show that our proposed mechanism may well explain the excellent efficiency of molten salts for SNAr reactions, the relative efficacy of the metal cations, and also the observed large difference in rate constants in two molten salts $(n-C_4H_9)_4N^+\;CX_3SO_3^-$, (X=H, F) with slightly different sidechain ($-CH_3$ vs. $-CF_3$).

Heat Transfer Characteristics of High Temperature molten salt storage for Solar Thermal Power Generation (태양열 발전을 위한 고온 축열 물질의 열전달 특성)

  • Aiming, Mao;KIm, Ki-Man;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.63-69
    • /
    • 2007
  • The heat transfer characteristics of inorganic salt for high temperature heat storage material of solar power system were examined. The inorganic salts employed in this study was a mixture of $NaNO_3$ and $KNO_3$ and the operating temperature range was determined by measuring the melting temperature with DSC and by measuring the thermal decomposition temperature with TGA. The heat transfer characteristics was qualitatively obtained in terms of temperature profiles of salt in the tanks during the heat storage and heat release process as a function of steam flow rates, steam inlet temperature and the inlet position of steam. The effects of steam flow rates and inlet temperature of steam were experimentally determined and the effect of natural convection was observed due to significant density difference with temperature.

Electrochemical Behavior of Li-B Alloy Anode - Liquid Cadmium Cathode (LCC) System for Electrodeposition of Nd in LiCl-KCl

  • Kim, Gha-Young;Shin, Jiseon;Kim, Tack-Jin;Shin, Jung-Sik;Paek, Seungwoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.102-106
    • /
    • 2015
  • The performance of Li-B alloy as anode for molten salt electrolysis was firstly investigated. The crystalline phase of the prepared Li-B alloy was identified as $Li_7B_6$. The potential profile of Li-B alloy anode was monitored during the electrodeposition of $Nd^{3+}$ onto an LCC (liquid cadmium cathode) in molten LiCl-KCl salt at $500^{\circ}C$. The potential of Li-B alloy was increased from -2.0 V to -1.4 V vs. Ag/AgCl by increasing the applied current from 10 to $50mA{\cdot}cm^{-2}$. It was found that not only the anodic dissolution of Li to $Li^+$ but also the dissolution of the atomic lithium ($Li^0$) into the LiCl-KCl eutectic salt was observed, following the concomitant reduction of $Nd^{3+}$ by the $Li^0$ in Li-B alloy. It was expected that the direct reduction could be restrained by maintaining the anode potential higher that the deposition potential of neodymium.

Electrochemical Behaviors of Bi3+ Ions on Inert Tungsten or on Liquid Bi Pool in the Molten LiCl-KCl Eutectic

  • Kim, Beom Kyu;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • Liquid Bi pool is a candidate electrode for an electrometallurgical process in the molten LiCl-KCl eutectic to treat the spent nuclear fuels from nuclear power plants. The electrochemical behavior of Bi3+ ions and the electrode reaction on liquid Bi pool were investigated with the cyclic voltammetry in an environment with or without BiCl3 in the molten LiCl-KCl eutectic. Experimental results showed that two redox reactions of Bi3+ on inert W electrode and the shift of cathodic peak potentials of Li+ and Bi3+ on liquid Bi pool electrode in molten LiCl-KCl eutectic. It is confirmed that the redox reaction of lithium with respect to the liquid Bi pool electrode would occur in a wide range of potentials in molten LiCl-KCl eutectic. The obtained data will be used to design the electrometallurgical process for treating actinide and lanthanide from the spent nuclear fuels and to understand the electrochemical reactions of actinide and lanthanide at liquid Bi pool electrode in the molten LiCl-KCl eutectic.

Pulse Electrodeposition of Polycrystalline Si Film in Molten CaCl2 Containing SiO2 Nanoparticles

  • Taeho Lim;Yeosol Yoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2023
  • The high cost of Si-based solar cells remains a substantial challenge to their widespread adoption. To address this issue, it is essential to reduce the production cost of solar-grade Si, which is used as raw material. One approach to achieve this is Si electrodeposition in molten salts containing Si sources, such as SiO2. In this study, we present the pulse electrodeposition of Si in molten CaCl2 containing SiO2 nanoparticles. Theoretically, SiO2 nanoparticles with a diameter of less than 20 nm in molten CaCl2 at 850℃ have a comparable diffusion coefficient with that of ions in aqueous solutions at room temperature. However, we observed a slower-than-expected diffusion of the SiO2 nanoparticles, probably because of their tendency to aggregate in the molten CaCl2. This led to the formation of a non-uniform Si film with low current efficiency during direct current electrodeposition. We overcome this issue using pulse electrodeposition, which enabled the facile supplementation of SiO2 nanoparticles to the substrate. This approach produced a uniform and thick electrodeposited Si film. Our results demonstrate an efficient method for Si electrodeposition in molten CaCl2 containing SiO2 nanoparticles, which can contribute to a reduction in production cost of solar-grade Si.