• Title/Summary/Keyword: molecular mutations

Search Result 580, Processing Time 0.026 seconds

A Case of Rett Syndrome with MECP2 Gene Mutation (MECP2 유전자 돌연변이가 확인된 Rett 증후군 1례)

  • Kim, Jin Kyung;Ki, Chang Seok;Kim, Jong Won
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.4
    • /
    • pp.540-544
    • /
    • 2002
  • Rett syndrome is an X-linked dominant, progressive neurodevelopmental disorder, with a prevalence estimated to be one in 10,000-15,000 girls, which is thought to be the second most common genetic causes of mental retardation in females after Down syndrome. Patients with classic Rett syndrome show an apparently normal neonatal period, followed by developmental regression and deceleration of head growth, accompanied by gradual loss of speech and purposeful hand use, and development of microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After regression between infancy and the fifth year of life, the clinical course stabilizes and patients usually survive into adulthood. It was recently discovered that Rett syndrome is caused by mutations in the methyl-CpG binding protein 2(MECP2) gene. Diagnosis of Rett syndrome is clinically difficult before three years of age, especially in atypical cases, but molecular analysis of the MECP2 gene could assist correct diagnosis in some patients. Recently, we diagnosed a case of Rett syndrome in a two year-old girl by mutational analysis of the MECP2 gene and want to report this case with brief review of literature.

Crystal Structure of (S)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridium butyricum and Its Mutations that Enhance Reaction Kinetics

  • Kim, Eun-Jung;Kim, Jieun;Ahn, Jae-Woo;Kim, Yeo-Jin;Chang, Jeong Ho;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1636-1643
    • /
    • 2014
  • 3-Hydroxybutyryl-CoA dehydrogenase is an enzyme that catalyzes the second step in the biosynthesis of n-butanol from acetyl-CoA, in which acetoacetyl-CoA is reduced to 3-hydroxybutyryl-CoA. To understand the molecular mechanisms of n-butanol biosynthesis, we determined the crystal structure of 3-hydroxybutyryl-CoA dehydrogenase from Clostridium butyricum (CbHBD). The monomer structure of CbHBD exhibits a two-domain topology, with N- and C-terminal domains, and the dimerization of the enzyme was mostly constituted at the C-terminal domain. The mode of cofactor binding to CbHBD was elucidated by determining the crystal structure of the enzyme in complex with $NAD^+$. We also determined the enzyme's structure in complex with its acetoacetyl-CoA substrate, revealing that the adenosine diphosphate moiety was not highly stabilized compared with the remainder of the acetoacetyl-CoA molecule. Using this structural information, we performed a series of site-directed mutagenesis experiments on the enzyme, such as changing residues located near the substrate-binding site, and finally developed a highly efficient CbHBD K50A/K54A/L232Y triple mutant enzyme that exhibited approximately 5-fold higher enzyme activity than did the wild type. The increased enzyme activity of the mutant was confirmed by enzyme kinetic measurements. The highly efficient mutant enzyme should be useful for increasing the production rate of n-butanol.

Expression, Purification and NMR Studies on MC4R-TM2 Mutant

  • Oh, Dae-Seok;Yun, Ji-Hye;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.1
    • /
    • pp.34-45
    • /
    • 2012
  • Melanocortin-4 receptor (MC4R) subtype is associated with obese humans. Especially, in a patient with severe early-onset obesity, novel heterozygous mutation in the MC4R gene was detected, resulting in an exchange of aspartic acid to asparagine in $90^{th}$ amino acid residue located in the predicted second trans-membrane domain (TM2). Mutations in the melanocortin-4 receptor (MC4R) gene are the most frequent monogenic causes of severe obesity which have been described as heterozygous with loss of function. In order to compare structure difference between MC4R wild type (MC4R-TM2-wt) and mutant (MC4R-TM2-D90N), we designed both MC4R-TM2-wt and MC4R-TM2-D90N construct in pET 21b vector. In this study, we optimized high-yield purification procedure for recombinant TM2-D90N. Eluted recombinant protein was resolubilized under urea condition for thrombin cleavage reaction and we conducted the high-performance liquid chromatography (HPLC) with reverse phase column under 1% acetonitrile, 0.01% TFA buffer solution. The molecular size of purified target peptide was confirmed by Tricine-SDS page analysis. To characterize MC4R-TM2-D90N, we have performed $^{15}N$-isotope labeling of peptide using M9 media and purified labeled target peptide for hetero-nuclear NMR spectroscopy.

Polymorphism of the DNA Repair Gene XRCC1 (Arg194Trp) and its role in Colorectal Cancer in Kashmiri Population: a Case Control Study

  • Nissar, Saniya;Sameer, Aga Syed;Rasool, Roohi;Chowdri, Nissar A;Rashid, Fouzia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6385-6390
    • /
    • 2015
  • Background: Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of developing cancer. For colorectal cancer the importance of mutations in mismatch repair genes has been extensively documented. Materials and Methods: In this study we focused on the Arg194Trp polymorphism of the DNA repair gene XRCC1, involved in base excision repair (BER) and its role in colorectal cancer in Kashmiri population. A case-control study was conducted including 100 cases of colorectal cancer, and 100 hospital-based age- and sex-matched healthy controls to examine the role of XRCC1 genetic polymorphisms in the context of colorectal cancer risk for the Kashmiri population. Results: Genotype analysis of XRCC1 Arg194Trp was conducted with a restriction fragment length polymorphism (RFLP) method. The overall association between the XRCC1 polymorphism and the CRC cases was found to be significant (p < 0.05) with both the heterozygous genotype (Arg/Trp) as well as homozygous variant genotype (Trp/Trp) being moderately associated with the elevated risk for CRC [OR=2.01 (95% CI=1.03-3.94) and OR=5.2(95% CI=1.42-19.5)] respectively. Conclusions: Our results suggest an increased risk for CRC in individuals with XRCC1 Arg194Trp polymorphism suggesting BER repair pathway modulates the risk of developing colorectal cancer in the Kashmiri population.

LKB1/AMPK/mTOR Signaling Pathway in Non-small-cell Lung Cancer

  • Han, Dong;Li, Shao-Jun;Zhu, Yan-Ting;Liu, Lu;Li, Man-Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4033-4039
    • /
    • 2013
  • Links between cancer and metabolism have been suggested for a long time but compelling evidence for this hypothesis came from the recent molecular characterization of the LKB1/AMPK signaling pathway as a tumor suppressor axis. Besides the discovery of somatic mutations in the LKB1 gene in certain type of cancers, a critical emerging point was that the LKB1/AMPK axis remains generally functional and could be stimulated by pharmacological molecules such as metformin in cancer cells. In addition, AMPK plays a central role in the control of cell growth, proliferation and autophagy through the regulation of mTOR activity, which is consistently deregulated in cancer cells. Targeting of AMPK/mTOR is thus an attractive strategy in the development of therapeutic agents against non-small-cell lung cancer (NSCLC). In this review, the LKB1/AMPK/mTOR signaling pathway is described, highlighting its protective role, and opportunities for therapeutic intervention, and clinical trials in NSCLC.

Short-chain Acyl-CoA Dehydrogenase Deficiency in an Asymptomatic Neonate (무증상 신생아에서 진단된 경쇄 acyl-CoA 탈수소효소 결핍증 1례)

  • Lee, Yeonhee;Kim, Jinsup;Huh, Rimm;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.2
    • /
    • pp.93-97
    • /
    • 2015
  • Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an autosomal recessive hereditary metabolic disorder of mitochondrial fatty acid beta-oxidation. Mutations in the ACADS gene cause short-chain acyl-CoA dehydrogenase deficiency, which is characterized by developmental delay, hypotonia, seizure, and hypoglycemia. Here, we describe one Korean pediatric case of SCAD deficiency, which was diagnosed during newborn screening by tandem mass spectrometry and confirmed by molecular analysis. The level of C4 was typically elevated 5.23 mg/dL (reference range <1.5 mg/dL). This patient had a homozygous mutation [c.1031A>G, p. E344G] in ACADS. Therefore, we present a case of SCAD deficiency in an otherwise healthy neonate and her subsequent development and growth over four years.

RNA-RNA Interactions between RNA Elements at the 5' end and at the Upstream of sgRNA of RNA Genome are Required for Potato virus X RNA Replication

  • Park, Mi-Ri;Park, Sang-Ho;Cho, Sang-Yun;Hemenway, Cynthia L.;Choi, Hong-Soo;Sohn, Seong-Han;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.289-295
    • /
    • 2008
  • RNA-RNA interactions and the dynamic RNA conformations are important regulators in virus replication in several RNA virus systems and may also involved in the regulation of many important virus life cycle phases, including translation, replication, assembly, and switches in these important stages. The 5' non-translated region of Potato virus X(PVX) contains multiple cis-acting elements that facilitate various viral processes. It has previously been proposed that RNA-RNA interactions between various RNA elements present in PVX RNA genome are required for PVX RNA accumulation(Hu et al., 2007; Kim and Hemenway, 1999). This model was based on the potential base-pairing between conserved sequence elements at the upstream of subgenomic RNAs(sgRNAs) and at the 5' and 3' end of RNA genome. We now provide more evidence that RNA-RNA base-pairing between elements present at the 5' end and upstream of each sgRNA is required for efficient replication of genomic and subgenomic plus-strand RNA accumulation. Site-directed mutations introduced at the 5' end of plus-strand RNA replication defective mutant(${\Delta}12$) increasing base-pairing possibility with conserved sequence elements located upstream of each sgRNAs restored genomic and subgenomic plus-strand RNA accumulation and caused symptom development in inoculated Nicotiana benthamiana plants. Serial passage of a deletion mutant(${\Delta}8$) caused more severe symptoms and restored wild type sequences and thus retained possible RNA-RNA base-pairing. Altogether, these results indicate that the RNA element located at the 5' end of PVX genome involved in RNA-RNA interactions and play a key role in high-level accumulation of plus-strand RNA in vivo.

Identification of Recently Selected Mutations Driven by Artificial Selection in Hanwoo (Korean Cattle)

  • Lim, Dajeong;Gondro, Cedric;Park, Hye Sun;Cho, Yong Min;Chai, Han Ha;Seong, Hwan Hoo;Yang, Bo Suk;Hong, Seong Koo;Chang, Won Kyung;Lee, Seung Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.603-608
    • /
    • 2013
  • Hanwoo have been subjected over the last seventy years to intensive artificial selection with the aim of improving meat production traits such as marbling and carcass weight. In this study, we performed a signature of selection analysis to identify recent positive selected regions driven by a long-term artificial selection process called a breeding program using whole genome SNP data. In order to investigate homozygous regions across the genome, we estimated iES (integrated Extended Haplotype Homozygosity SNP) for the each SNPs. As a result, we identified two highly homozygous regions that seem to be strong and/or recent positive selection. Five genes (DPH5, OLFM3, S1PR1, LRRN1 and CRBN) were included in this region. To go further in the interpretation of the observed signatures of selection, we subsequently concentrated on the annotation of differentiated genes defined according to the iES value of SNPs localized close or within them. We also described the detection of the adaptive evolution at the molecular level for the genes of interest. As a result, this analysis also led to the identification of OLFM3 as having a strong signal of selection in bovine lineage. The results of this study indicate that artificial selection which might have targeted most of these genes was mainly oriented towards improvement of meat production.

Novel Nonsense Variants c.58C>T (p.Q20X) and c.256G>T (p.E85X) in the CHEK2 Gene Identified in Breast Cancer Patients from Balochistan

  • Baloch, Abdul Hameed;Khosa, Ahmad Nawaz;Bangulzai, Nasrullah;Shuja, Jamila;Naseeb, Hafiz Khush;Jan, Mohammad;Marghazani, Illahi Bakhsh;Kakar, Masood-ul-Haq;Baloch, Dost Mohammad;Cheema, Abdul Majeed;Ahmad, Jamil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3623-3626
    • /
    • 2016
  • Breast cancer is very common and the leading cause of cancer deaths among women globally. Hereditary cases account for 5-10% of the total burden and CHEK2, which plays crucial role in response to DNA damage to promote cell cycle arrest and repair or induce apoptosis, is considered as a moderate penetrance breast cancer risk gene. Our objective in the current study was to analyze mutations in related to breast cancer. A total of 271 individuals including breast cancer patients and normal subjects were enrolled and all 14 exons of CHEK2 were amplified and sequenced. The majority of the patients (>95%) were affected with invasive ductal carcinoma (IDC), 52.1% were diagnosed with grade III tumors and 56.2% and 27.5% with advanced stages III and IV. Two novel nonsense variants i.e. c.58C>T (P.Q20X) and c.256G>T (p.E85X) at exon 1 and 2 in two breast cancer patients were identified, both novel and not reported elsewhere.

Regulation of HIF-1α stability by lysine methylation

  • Baek, Sung Hee;Kim, Keun Il
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.245-246
    • /
    • 2016
  • The level and activity of critical regulatory proteins in cells are tightly controlled by several tiers of post-translational modifications. HIF-1α is maintained at low levels under normoxia conditions by the collaboration between PHD proteins and the VHL-containing E3 ubiquitin ligase complex. We recently identified a new physiologically relevant mechanism that regulates HIF-1α stability in the nucleus in response to cellular oxygen levels. This mechanism is based on the collaboration between the SET7/9 methyltransferase and the LSD1 demethylase. SET7/9 adds a methyl group to HIF-1α, which triggers degradation of the protein by the ubiquitin-proteasome system, whereas LSD1 removes the methyl group, leading to stabilization of HIF-1α under hypoxia conditions. In cells from knock-in mice with a mutation preventing HIF-1α methylation (Hif1αKA/KA), HIF-1α levels were increased in both normoxic and hypoxic conditions. Hif1αKA/KA knock-in mice displayed increased hematological parameters, such as red blood cell count and hemoglobin concentration. They also displayed pathological phenotypes; retinal and tumor-associated angiogenesis as well as tumor growth were increased in Hif1αKA/KA knock-in mice. Certain human cancer cells exhibit mutations that cause defects in HIF-1α methylation. In summary, this newly identified methylation-based regulation of HIF-1α stability constitutes another layer of regulation that is independent of previously identified mechanisms.