• Title/Summary/Keyword: molecular flexibility

Search Result 97, Processing Time 0.039 seconds

Study on the Method of Analyzing the Plasticizer of Petrochemical Products using MD-GC/MS (MD-GC/MS를 활용한 석유화학제품의 가소제(DOA, DOP) 분석방법 연구)

  • Doe, Jin-woo;Youn, Ju-min;Kang, Hyung-kyu;Hwang, In-ha;Ha, Jong-han;Na, Byung-ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.1085-1093
    • /
    • 2017
  • Plasticizers are materials added to give softness and elasticity to plastics having rigid properties to give soft properties as products, and they are mainly added to high molecular materials to give flexibility to improve workability and to improve cold resistance, resistance to volatility and electrical properties. It is used for the purpose. Most plasticizers are inert liquids, similar in function to solvents but with high molecular weight and no volatility. In addition, when dissolved in petrochemical products, only the plasticizer is separated by the matrix effect with other compounds, and qualitative and quantitative analysis. In this study, qualitative and quantitative analysis of DOA and DOP, which are representative components of petrochemical products, were conducted using MD-GC/MS and developed an optimal plasticizer analysis method.

The Qualiatative Characteristics of Phthalate in Miho Stream around Cheongju City (청주시 근교 미호천의 프탈레이트 정성적 특성)

  • Shin, Jinhwan;Jeoung, Youngdo;Lee, Yeouljae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.5-11
    • /
    • 2008
  • The paper presents the results of qualitative analysis of phthalate esteres in Miho stream in of Cheongju city. Phthalate esters (Di-2-ethylhexylphthalate, Di-n-butylphthalate) are widely used as plasticizers to increase the flexibility and workability of high-molecular-weight polymer. For water phase, DEHP concentration in upper stream and down stream were $12-18{\mu}g/{\ell}$ and $11-21{\mu}g/{\ell}$, respectively. For sediment phase, DEHP concentration in upper stream and down stream were $0.07-0.82{\mu}g/g$ (dry) and $0.06-0.92{\mu}g/g$ (dry), respectively. Also, DnBP concentration of sediment in same site were $0.04-0.25{\mu}g/g$ (dry) and $0.08-0.34{\mu}g/g$ (dry), respectively. DEHP and DnBP concentration of water phase in the small stream of industrial area were $13-28{\mu}g/{\ell}$ and $2-8{\mu}g/{\ell}$, respectively. DEHP and DnBP concentration of sediment phase in the small stream of industrial area were $0.12-0.7{\mu}g/g$ (dry) and $0.17-2.16{\mu}g/g$ (dry), respectively. Phthatlate esteres in water and sediments phase of Miho stream were lower than water bodies around the world.

  • PDF

Thermotropic Liquid Crystalline Behaviors of 4-{4'-(nitrophenylazo)phenoxy}alkanoic Acids and 4-{4'-(nitrophenylazo)phenoxy}alkanoyl Chlorides (4-{4'-(니트로페닐아조)펜옥시}알칸 산들 그리고 4-{4'-(니트로페닐아조)펜옥시}알카노일 클로라이드들의 열방성 액정 거동)

  • Jeong, Seung Yong;Ma, Yung Dae
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.504-511
    • /
    • 2008
  • Two kinds of nitroazobenzene derivatives: 4-{4'-(nitrophenylazo)phenoxy}alkanoic acids (NAAn, n = 2~8, 10, number of methylene units in the alkyl chain) and 4-{4'-(nitrophenylazo)phenoxy}alkanoyl chlorides (NACn, n = 2~8, 10) were synthesized, and their thermotropic liquid crystalline behaviors were investigated. NAA6 formed an enantiotropic nematic phase, while the remainders, except NAA2, showed monotropic nematic phases. Isotropic-nematic transition temperature ($T_{iN}$) and change of entropy (${\Delta}S$) at $T_{iN}$ for both of NAAn and NACn varied by the change of n, and pronounced odd-even effects of n were also observed. However, the $T_{iN}$ and ${\Delta}S$ values of NAAn were much higher than those of NACn. This fact may be attributed to the hydrogen bonding between carboxyl groups. Thermal properties and degree of order in the mesophase and the magnitude of the odd-even effects of both NAAn and NACn were significantly different from those reported for 4-(alkoxy)-4'-nitroazobenzenes. It was discussed in terms of the differences in the molecular anisotropy and the temperature-dependent flexibility of the substituted groups.

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

Effect of Amino Modified Siloxanes with Two Different Molecular Weights on the Properties of Epoxy Composites for Adhesives for Micro Electronics (전자소재 접착제용 에폭시에 두 종의 다른 당량수를 갖는 아미노 변성 실록산이 미치는 영향)

  • Yu, Kihwan;Kim, Daeheum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.104-108
    • /
    • 2011
  • In the non-conductive adhesives (NCAs) for adhesion of micro electro mechanical system (MEMS), there are some problems such as delamination and cracking resulting from the large differences of coefficients of thermal expansion (CTE) between NCAs and substrates. So, the addition of inorganic particles such as silica and nano clay to the CTEs composit have been applied to reduce the CTEs of the adhesives. Additions of the flexibilizers such as siloxanes have also been performed to improve the flexibility of epoxy composite. Amino modified siloxane (AMSs) were used to improve compatibility between epoxy and siloxane. In this study, glass transition temperatures (Tg) and moduli of those composites were measured to confirm the effects of AMS with two different equivalents on thermal/mechanical properties of AMS/epoxy composites. Tg of KF-8010/epoxy composites decreased from 148 to $122^{\circ}C$ and those of X-22-161A/epoxy composites decreased from 148 to $121^{\circ}C$. Moduli of KF-8010/epoxy composites decreased from 2648 to 2143 MPa by adding KF-8010 and moduli of X-22-161A/epoxy composites decreased from 2648 to 2014 MPa. In short, using long Si-O chain AMS leads to a greater decrease in moduli. However, haven't showed significant differences in Tg's.

Physicochemical Characteristics and Skin Absorption of Transfersomes Containing Centella asiatica Extract According to Edge Activators (Edge Activator 에 따른 병풀추출물 함유 트렌스퍼좀의 물리화학적 특성과 피부흡수)

  • Eun-hee Lee;Kyung-Sup Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.147-157
    • /
    • 2023
  • Centella asiatica extract is widely used as a raw material for cosmetics due to its various effects, but it is difficult to expect penetration into the skin due to its high molecular weight and low solubility. In order to solve these problems, lipid-based liposomes of various types were developed to increase skin absorption. Therefore, in this study, we tried to increase the skin absorption rate by preparing transfersomes using surfactants as edge activators in existing liposomes. Liposome and transfersomes containing Span 80 and Tween 20, 60, 80, and 85, respectively, were prepared using a high-pressure homogenizer, and we evaluated the particle size, polydispersity index, zeta potential, and skin absorption rate. As a result, there was almost no change in the physical properties of particle size, polydispersity index and zeta potential from 25 ℃ to 60 d, and the particle size of transfersomes containing Tween 20, 60, and 80 increased after 60 d at 45 ℃. Madecassoside, main substances of the Centella asiatica extract was used as an standard and madecassoside was measured and calculated when measuring the skin absorption rate using Franz diffusion cells. As a result, formulations containing Tween 20 were the most, whereas formulations containing Span 80 were the least. According to the skin absorption coefficient (Kp) value, all formulations showed 'very fast', and the absorption rate was similar or greater than that of liposomes, except for formulations containing Span 80. Through this, it was confirmed that the larger the HLB value of the nonionic surfactant, the smaller the particle size of the transfersome, and the increased skin absorption rate due to the increased flexibility of the vesicle membrane. Through this study, transfersome using surfactant as an edge activator can be expected to solve local skin problems not only as a cosmetic raw material or product, but also by increasing skin absorption.

Distribution and Frequency of SSR Motifs in the Chrysanthemum SSR-enriched Library through 454 Pyrosequencing Technology (국화 SSR-enriched library에서 SSR 반복염기의 분포 및 빈도)

  • Moe, Kyaw Thu;Ra, Sang-Bog;Lee, Gi-An;Lee, Myung-Chul;Park, Ha-Seung;Kim, Dong-Chan;Lee, Cheol-Hwi;Choi, Hyun-Gu;Jeon, Nak-Beom;Choi, Byung-Jun;Jung, Ji-Youn;Lee, Kyu-Min;Park, Yong-Jin
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.546-551
    • /
    • 2011
  • Chrysanthemums, often called mums or chrysanths, belong to the genus Chrysanthemum, which includes about 30 species of perennial flowering plants in the family Asteraceae. We extracted DNA from Dendranthema grandiflorum ('Smileball') to construct a simple sequence repeat (SSR)-enriched library, using a modified biotin-streptavidin capture method. GS FLX (Genome Sequencer FLX System which provides the flexibility to perform the broad range of applications) sequencing (at the 1/8 run specification) resulted in 18.83 mega base pairs (Mbp) with an average read length of 280.06 bp. Sequence analyses of all SSR-containing clones revealed a predominance of di-nucleotide motifs (16,375, 61.5%) followed by tri-nucleotide motifs (6,616, 24.8%), tetra-nucleotide motifs (1,674, 6.3%), penta-nucleotide motifs (1,283, 4.8%), and hexa-nucleotide motifs (693, 2.6%). Among the di-nucleotide motifs, the AC/CA class was the most frequently identified (93.5% of all di-nucleotide types), followed by the GA/AG class (6.1%), the AT/TA class (0.4%), and the CG/GC class (0.03%). When we analyzed the distribution of different repeat motifs and their respective numbers of repeats, regardless of the motif class, of 100 SSR markers, we found a higher number of di-nucleotide motifs with 70 to 80 repeats; we also found two di-nucleotide motifs with 83 and 89 repeats, respectively, but their product lengths were within optimum size (297 and 300 bp). In future work, we will screen for polymorphisms of possible primer pairs. The results will provide a useful tool for assessing molecular diversity and investigating the population structure among and within Chrysanthemum species.