• Title/Summary/Keyword: molecular evidence

Search Result 902, Processing Time 0.027 seconds

Nucleotide Binding Component of the Respiratory Burst Oxidase of Human Neutrophils

  • Park, Jeen-Woo;Ahn, Soo-Mi
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.275-280
    • /
    • 1995
  • The respiratory burst oxidase of neutrophils is a multicomponent enzyme, domant in resting cells, that catalyzes the reduction of oxygen to $O_{2}^{-}$ at the expense of NADPH. In the resting neutrophil, some of the components of the oxidase, including proteins p47 and p67, are in the cytosol, while the rest are in the plasma membrane. Recent evidence has suggested that at least some of the cytosolic oxidase components exist as a complex. The cytosolic complex with a molecular weight of ~240 kDa was found to bind to blue-agarose and 2',5'-ADP-agarose, which recognize nucleotide requiring enzymes. In order to identify the nucleotide binding component of the cytosolic complex we purified recombinant p47 and p67 fusion proteins using the pGEX system. Pure recombinant p47 was retained completely on 2',5'-ADP-agarose, whereas pure recombinant p67 did not bind to these affinity beads. On the basis of these results, we infer that p47 may contain the nucleotide binding site.

  • PDF

Capicua is involved in Dorsal-mediated repression of zerknüllt expression in Drosophila embryo

  • Shin, Dong-Hyeon;Hong, Joung-Woo
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.518-523
    • /
    • 2014
  • The maternal transcription factor Dorsal (Dl) functions as both an activator and a repressor in a context-dependent manner to control dorsal-ventral patterning in the Drosophila embryo. Previous studies have suggested that Dl is an intrinsic activator and its repressive activity requires additional corepressors that bind corepressor-binding sites near Dl-binding sites. However, the molecular identities of the corepressors have yet to be identified. Here, we present evidence that Capicua (Cic) is involved in Dl-mediated repression in the zerkn$\ddot{u}$llt (zen) ventral repression element (VRE). Computational and genetic analyses indicate that a DNA-binding consensus sequence of Cic is highly analogous with previously identified corepressor-binding sequences and that Dl failed to repress zen expression in lateral regions of cic mutant embryos. Furthermore, electrophoretic mobility shift assay (EMSA) shows that Cic directly interacts with several corepressor-binding sites in the zen VRE. These results suggest that Cic may function as a corepressor by binding the VRE.

Cellular and Molecular Pathways of Ischemic Neuronal Death

  • Won, Seok-Joon;Kim, Doo-Yeon;Gwag, Byoung-Joo
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.67-86
    • /
    • 2002
  • Three routes have been identified triggering neuronal death under physiological and pathological conditions. Excess activation of ionotropic glutamate receptors cause influx and accumulation of $Ca^{2+}$ and $Na^+$ that result in rapid swelling and subsequent neuronal death within a few hours. The second route is caused by oxidative stress due to accumulation of reactive oxygen and nitrogen species. Apoptosis or programmed cell death that often occurs during developmental process has been coined as additional route to pathological neuronal death in the mature nervous system. Evidence is being accumulated that excitotoxicity, oxidative stress, and apoptosis propagate through distinctive and mutually exclusive signal transduction pathway and contribute to neuronal loss following hypoxic-ischemic brain injury. Thus, the therapeutic intervention of hypoxic-ischemic neuronal injury should be aimed to prevent excitotoxicity, oxidative stress, and apoptosis in a concerted way.

Apoptotic Cell Death Following Traumatic Injury to the Central Nervous System

  • Springer, Joe E.
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.94-105
    • /
    • 2002
  • Apoptotic cell death is a fundamental and highly regulated biological process in which a cell is instructed to actively participate in its own demise. This process of cellular suicide is activated by developmental and environmental cues and normally plays an essential role in eliminating superfluous, damaged, and senescent cells of many tissue types. In recent years, a number of experimental studies have provided evidence of widespread neuronal and glial apoptosis following injury to the central nervous system (CNS). These studies indicate that injury-induced apoptosis can be detected from hours to days following injury and may contribute to neurological dysfunction. Given these findings, understanding the biochemical signaling events controlling apoptosis is a first step towards developing therapeutic agents that target this cell death process. This review will focus on molecular cell death pathways that are responsible for generating the apoptotic phenotype. It will also summarize what is currently known about the apoptotic signals that are activated in the injured CNS, and what potential strategies might be pursued to reduce this cell death process as a means to promote functional recovery.

Dopamine signaling in food addiction: role of dopamine D2 receptors

  • Baik, Ja-Hyun
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.519-526
    • /
    • 2013
  • Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA signaling in mesolimbic neurotransmission are widely believed to modify reward-related behaviors and are therefore closely associated with drug addiction. Recent evidence now suggests that as with drug addiction, obesity with compulsive eating behaviors involves reward circuitry of the brain, particularly the circuitry involving dopaminergic neural substrates. Increasing amounts of data from human imaging studies, together with genetic analysis, have demonstrated that obese people and drug addicts tend to show altered expression of DA D2 receptors in specific brain areas, and that similar brain areas are activated by food-related and drug-related cues. This review focuses on the functions of the DA system, with specific focus on the physiological interpretation and the role of DA D2 receptor signaling in food addiction.

MicroRNAs as critical regulators of the endothelial to mesenchymal transition in vascular biology

  • Kim, Jongmin
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.65-72
    • /
    • 2018
  • The endothelial to mesenchymal transition (EndMT) is a newly recognized, fundamental biological process involved in development and tissue regeneration, as well as pathological processes such as the complications of diabetes, fibrosis and pulmonary arterial hypertension. The EndMT process is tightly controlled by diverse signaling networks, similar to the epithelial to mesenchymal transition. Accumulating evidence suggests that microRNAs (miRNAs) are key regulators of this network, with the capacity to target multiple messenger RNAs involved in the EndMT process as well as in the regulation of disease progression. Thus, it is highly important to understand the molecular basis of miRNA control of EndMT. This review highlights the current fund of knowledge regarding the known links between miRNAs and the EndMT process, with a focus on the mechanism that regulates associated signaling pathways and discusses the potential for the EndMT as a therapeutic target to treat many diseases.

New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis

  • Yoon, Gyeong Mee
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.597-603
    • /
    • 2015
  • Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.

Mitochondrial noncoding RNA transport

  • Kim, Kyoung Mi;Noh, Ji Heon;Abdelmohsen, Kotb;Gorospe, Myriam
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.164-174
    • /
    • 2017
  • Mitochondria are cytosolic organelles essential for generating energy and maintaining cell homeostasis. Despite their critical function, the handful of proteins expressed by the mitochondrial genome is insufficient to maintain mitochondrial structure or activity. Accordingly, mitochondrial metabolism is fully dependent on factors encoded by the nuclear DNA, including many proteins synthesized in the cytosol and imported into mitochondria via established mechanisms. However, there is growing evidence that mammalian mitochondria can also import cytosolic noncoding RNA via poorly understood processes. Here, we summarize our knowledge of mitochondrial RNA, discuss recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria, and identify rising challenges and opportunities in this rapidly evolving field.

Protein Kinase D1, a New Molecular Player in VEGF Signaling and Angiogenesis

  • Ha, Chang Hoon;Jin, Zheng Gen
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Vascular endothelial growth factor (VEGF) is essential for many angiogenic processes both in normal and pathological conditions. However, the signaling pathways involved in VEGF-induced angiogenesis are incompletely understood. The protein kinase D1 (PKD1), a newly described calcium/calmodulin-dependent serine/threonine kinase, has been implicated in cell migration, proliferation and membrane trafficking. Increasing evidence suggests critical roles for PKD1-mediated signaling pathways in endothelial cells, particularly in the regulation of VEGF-induced angiogenesis. Recent studies show that class IIa histone deacetylases (HDACs) are PKD1 substrates and VEGF signal-responsive repressors of myocyte enhancer factor-2 (MEF2) transcriptional activation in endothelial cells. This review provides a guide to PKD1 signaling pathways and the direct downstream targets of PKD1 in VEGF signaling, and suggests important functions of PKD1 in angiogenesis.

New Links between mRNA Polyadenylation and Diverse Nuclear Pathways

  • Di Giammartino, Dafne Campigli;Manley, James L.
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.644-649
    • /
    • 2014
  • The 3' ends of most eukaryotic messenger RNAs must undergo a maturation step that includes an endonuc-leolytic cleavage followed by addition of a polyadenylate tail. While this reaction is catalyzed by the action of only two enzymes it is supported by an unexpectedly large number of proteins. This complexity reflects the necessity of coordinating this process with other nuclear events, and growing evidence indicates that even more factors than previously thought are necessary to connect 3' processing to additional cellular pathways. In this review we summarize the current understanding of the molecular machinery involved in this step of mRNA maturation, focusing on new core and auxiliary proteins that connect polyadenylation to splicing, DNA damage, transcription and cancer.