• Title/Summary/Keyword: molecular evidence

Search Result 902, Processing Time 0.038 seconds

Eosinophil disorders (호산구이상증)

  • Kim, Sun Young
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.6
    • /
    • pp.643-648
    • /
    • 2009
  • Blood eosinophilia can be classified as either familial or acquired. Familial eosinophilia is a rare autosomal dominant disorder characterized by a stable eosinophil count. Acquired eosinophilia is classified further into a primary or secondary phenomenon depending on whether eosinophils are considered integral to the underlying disease. Primary eosinophilia is considered clonal in the presence of either a cytogenetic abnormality or bone marrow histological evidence of classified hematologic malignancies. Causes of secondary eosinophilia include infections, allergic or immunologic disorders, and drugs. Idiopathic eosinophilia belongs to a category of primary eosinophilia, and this is a diagnosis of exclusion. Cases with eosinophilia that lack evidence of clonality may be diagnosed as idiopathic hypereosinophilic syndrome after all causes of reactive eosinophilia have been eliminated. Genetic mutations involving the platelet-derived growth receptor genes (PDGFRA and PDGFRB) have been pathogenetically linked to clonal eosinophilia, and their presence predicts the treatment response to imatinib. In this review, I will present a clinical summary of both familial and acquired eosinophilia with emphasis on recent developments in molecular pathogenesis and treatment.

Rhinovirus and childhood asthma: an update

  • Song, Dae Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.11
    • /
    • pp.432-439
    • /
    • 2016
  • Asthma is recognized as a complex disease resulting from interactions between multiple genetic and environmental factors. Accumulating evidence suggests that respiratory viral infections in early life constitute a major environmental risk factor for the development of childhood asthma. Respiratory viral infections have also been recognized as the most common cause of asthma exacerbation. The advent of molecular diagnostics to detect respiratory viruses has provided new insights into the role of human rhinovirus (HRV) infections in the pathogenesis of asthma. However, it is still unclear whether HRV infections cause asthma or if wheezing with HRV infection is simply a predictor of childhood asthma. Recent clinical and experimental studies have identified plausible pathways by which HRV infection could cause asthma, particularly in a susceptible host, and exacerbate disease. Airway epithelial cells, the primary site of infection and replication of HRV, play a key role in these processes. Details regarding the role of genetic factors, including ORMDL3, are beginning to emerge. This review discusses recent clinical and experimental evidence for the role of HRV infection in the development and exacerbation of childhood asthma and the potential underlying mechanisms that have been proposed.

The Role of NMDA Receptor in Learning and Memory (학습과 기억에서 NMDA 수용체의 역할)

  • Kim, Seung-Hyun;Shin, Kyung-Ho
    • Sleep Medicine and Psychophysiology
    • /
    • v.7 no.1
    • /
    • pp.10-17
    • /
    • 2000
  • To investigate the neurobiological bases of learning and memory is one of the ambitious goals of modern neuroscience. The progress in this field of recent years has not only brought us closer to understanding the molecular mechanism underlying long-lasting changes in synaptic strength, but it has also provided further evidence that these mechanisms are required for memory formation. Since twenty years ago, several studies for the tests of the hypothesis that NMDA-dependent hippocampal long-term potentiation(LTP) underlies learning have been reported. Also, in the recent year, data from mutant mice showed that a potential role for NMDA-dependent LTP in hippocampal CA1 and spatial learning. Although the current evidence for the role of NMDA receptor in learning and memory is not still obvious, NMDA receptor seems to act as a critical switch for activation of a cascade of events that underlie synaptic plasticity.

  • PDF

Medical Management of Drug-Resistant Tuberculosis

  • Jeon, Doosoo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.3
    • /
    • pp.168-174
    • /
    • 2015
  • Drug-resistant tuberculosis (TB) is still a major threat worldwide. However, recent scientific advances in diagnostic and therapeutic tools have improved the management of drug-resistant TB. The development of rapid molecular testing methods allows for the early detection of drug resistance and prompt initiation of an appropriate treatment. In addition, there has been growing supportive evidence for shorter treatment regimens in multidrug-resistant TB; and for the first time in over 50 years, new anti-TB drugs have been developed. The World Health Organization has recently revised their guidelines, primarily based on evidence from a meta-analysis of individual patient data (n=9,153) derived from 32 observational studies, and outlined the recommended combination and correct use of available anti-TB drugs. This review summarizes the updated guidelines with a focus on the medical management of drug-resistant TB.

Anthocyanins: Targeting of Signaling Networks in Cancer Cells

  • Sehitoglu, Muserref Hilal;Farooqi, Ammad Ahmad;Qureshi, Muhammad Zahid;Butt, Ghazala;Aras, Aliye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2379-2381
    • /
    • 2014
  • It is becoming progressively more understandable that phytochemicals derived from edible plants have shown potential in modelling their interactions with their target proteins. Rapidly accumulating in-vitro and in- vivo evidence indicates that anthocyanins have anticancer activity in rodent models of cancer. More intriguingly, evaluation of bilberry anthocyanins as chemopreventive agents in twenty-five colorectal cancer patients has opened new window of opportunity in translating the findings from laboratory to clinic. Confluence of information suggests that anthocyanins treated cancer cells reveal up-regulation of tumor suppressor genes. There is a successive increase in the research-work in nutrigenomics and evidence has started to shed light on intracellular-signaling cascades as common molecular targets for anthocyanins. In this review we bring to l imelight how anthocyanins induced apoptosis in cancer cells via activation of extrinsic and intrinsic pathways.

Cellulosome-Like Structures in Ruminal Cellulolytic Bacterium Ruminococcus albus F-40 as Revealed by Electron Microscopy

  • Kim, Y.S.;Singh, A.P.;Wi, S.G.;Myung, K.H.;Karita, S.;Ohmiya, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1429-1433
    • /
    • 2001
  • This study provides electron microscopic evidence for the presence of cellulosome-like structures on the cell surface of Ruminococcus albus F-40. Electron microscopy showed that clusters of tightly packed spherical particles were located on the cell surface of R. albus. The protuberant structures present mainly on the bacterial surface and also bound to the cellulose substrate appeared to be the site of cellulosome-like structures. From the evidence presented, we suggest that the structures described here might be a characteristic feature of some ruminal cellulolytic bacteria.

Sleep and Memory (수면과 기억)

  • Cyn, Jae-Gong
    • Sleep Medicine and Psychophysiology
    • /
    • v.12 no.1
    • /
    • pp.5-10
    • /
    • 2005
  • Study in the field of sleep and memory has greatly expanded recently and the number of publications supporting the association between sleep and memory consolidation is rapidly growing. This study presents evidence related to sleep-dependent memory consolidation, ranging from behavioral task-performing studies to molecular studies, and several arguments against the association. Basic researches show that many genes are upwardly regulated during sleep and patterns of brain activation seen during daytime task training are repeated during subsequent REM sleep. Several electrophysiological studies demonstrate the correlation between spindle density increase following training and subsequent improvement in performing the training task. Overnight improvement or deterioration in task performance correlates with REM or SWS sleep. In the end, a lot of issues remain to be studied and discussed further in the future in spite of supporting evidence now available.

  • PDF

Understanding Enzyme Structure and Function in Terms of the Shifting Specificity Model

  • Britt, Billy Mark
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.394-401
    • /
    • 2004
  • The purpose of this paper is to suggest that the prominence of Haldane's explanation for enzyme catalysis significantly hinders investigations in understanding enzyme structure and function. This occurs despite the existence of much evidence that the Haldane model cannot embrace. Some of the evidence, in fact, disproves the model. A brief history of the explanation of enzyme catalysis is presented. The currently accepted view of enzyme catalysis -- the Haldane model -- is examined in terms of its strengths and weaknesses. An alternate model for general enzyme catalysis (the Shifting Specificity model) is reintroduced and an assessment of why it may be superior to the Haldane model is presented. Finally, it is proposed that a re-examination of many current aspects in enzyme structure and function (specifically, protein folding, x-ray and NMR structure analyses, enzyme stability curves, enzyme mimics, catalytic antibodies, and the loose packing of enzyme folded forms) in terms of the new model may offer crucial insights.

LRRK2 and membrane trafficking: nexus of Parkinson's disease

  • Hur, Eun-Mi;Jang, Eun-Hae;Jeong, Ga Ram;Lee, Byoung Dae
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.533-539
    • /
    • 2019
  • Recent evidence from genetics, animal model systems and biochemical studies suggests that defects in membrane trafficking play an important part in the pathophysiology of Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) constitute the most frequent genetic cause of both familial and sporadic PD, and LRRK2 has been suggested as a druggable target for PD. Although the precise physiological function of LRRK2 remains largely unknown, mounting evidence suggests that LRRK2 controls membrane trafficking by interacting with key regulators of the endosomal-lysosomal pathway and synaptic recycling. In this review, we discuss the genetic, biochemical and functional links between LRRK2 and membrane trafficking. Understanding the mechanism by which LRRK2 influences such processes may contribute to the development of disease-modifying therapies for PD.

Alteration of The Quaternary Structure of Human UDP-Glucose Dehydrogenase by a Double Mutation

  • Huh, Jae-Wan;Yang, Seung-Ju;Hwang, Eun-Young;Choi, Myung-Min;Lee, Hyun-Ju;Kim, Eun-A;Choi, Soo-Young;Choi, Jene;Hong, Hea-Nam;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.690-696
    • /
    • 2007
  • There are conflicting views for the polymerization process of human UDP-glucose dehydrogenase (UGDH) and no clear evidence has been reported yet. Based on crystal coordinates for Streptococcus pyogenes UGDH, we made double mutant A222Q/S233G. The double mutagenesis had no effects on expression, stability, and secondary structure. Interestingly, A222Q/S233G was a dimeric form and showed an UGDH activity, although it showed increased $K_m$ values for substrates. These results suggest that Ala222 and Ser233 play an important role in maintaining the hexameric structure and the reduced binding affinities for substrates are attributable to its altered subunit communication although quaternary structure may not be critical for catalysis.