• Title/Summary/Keyword: molecular distribution

Search Result 1,397, Processing Time 0.031 seconds

Deep-Learning-Based Molecular Imaging Biomarkers: Toward Data-Driven Theranostics

  • Choi, Hongyoon
    • Progress in Medical Physics
    • /
    • v.30 no.2
    • /
    • pp.39-48
    • /
    • 2019
  • Deep learning has been applied to various medical data. In particular, current deep learning models exhibit remarkable performance at specific tasks, sometimes offering higher accuracy than that of experts for discriminating specific diseases from medical images. The current status of deep learning applications to molecular imaging can be divided into a few subtypes in terms of their purposes: differential diagnostic classification, enhancement of image acquisition, and image-based quantification. As functional and pathophysiologic information is key to molecular imaging, this review will emphasize the need for accurate biomarker acquisition by deep learning in molecular imaging. Furthermore, this review addresses practical issues that include clinical validation, data distribution, labeling issues, and harmonization to achieve clinically feasible deep learning models. Eventually, deep learning will enhance the role of theranostics, which aims at precision targeting of pathophysiology by maximizing molecular imaging functional information.

Characteristics of Degradation of Humic Acid in GAC Adsorption, Ozone Alone, and Ozone/GAC Hybrid Process (활성탄 흡착, 오존 단독, 그리고 오존/활성탄 혼합공정에서 부식산의 분해 특성)

  • Choi, Eun-Hye;Kim, Kei-Woul;Kim, Seog-Ku;Rhee, Dong-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.989-994
    • /
    • 2005
  • The treatment efficiency and the degradation characteristics of humic acid were investigated in three processes-GAC adsorption, Ozone alone and Ozone/GAC hybrid process, in which $UV_{254}$, DOC, molecular size distribution and surface change of GAC were evaluated. DOC removal rate in Ozone/GAC hybrid profess(ca. 80%) was higher than the arithmetic sum of Ozone alone(38%) and GAC adsorption(19%). This result approves that the combined Ozone/GAC hybrid process brings synergistic effects on DOC removal from the HA containing water. $UV_{254}$ decrease rate was also at the highest in Ozone/GAC hybrid process from the three processes. It may be interpreted that the granular activated carbon in Ozone/GAC hybrid process acts as not only an adsorbent but also a catalyst for ozonation, and futhermore offers an additional reaction site between adsorbed organic matter and ozone. In the study of molecular sire distribution, there was no significant change of molecular size distribution in the GAC adsorption process during the reaction time of 120 min. In Ozone alone process, the fraction of molecular size over 30 kDa was decreased a little at the beginning and left constant after 10 min. But in Ozone/GAC hybrid process, the molecules size over 30 kDa of HA was significantly decreased from 36.3% to 3.9%. And also the fraction of smaller molecular size below 0.5 kDa was increased from 4.8%(untreated HA) to 12.3%(in Ozone alone) and 40.1%(in Ozone/GAC) respectively at the reaction time of 120 min.

The Distribution of $^{14}C-chitosan$ by Different Molecular Weight in Mice (마우스에서 $^{14}C-chitosan$ 분자량별 체내 분포에 관한 연구)

  • Kim, Kwang-Yoon;Kim, Young-Ho;Kim, Hee-Kyung;Bom, Hee-Seung;Kim, Ji-Yeul;Roh, Young-Bok;Nishimura, Yoshikazu
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.2
    • /
    • pp.83-88
    • /
    • 1998
  • Chitosan is a nontoxic natural chealtor which was made by chitin, and reduced a contamination of radiostrontium in animals. In this experiment, A different molecular weight of C-14 chitosan was intravenously administered to mice, and then the distribution of C-14 chitosan in the body was observed. Male mice (8 to 10 weeks, body weight of 30 to 35g) of ICR strain were used. C-14 chitosan was diluted with saline and then given intravenously in mice. After the administration of C-14 chitosan, mice was sacrificed at the 6th hour, 1st, 3rd, 5th, and 7th day. Beta radioactivities in the blood, liver, kidney, liver, muscle, testis, and urine was measured using a liquid scintillation analyzer. Most of the C-14 chitosan was excreted through urine within 6 hours. Biodistribution of C-14 chitosan was similar despite the difference of moleclar weight. Higher distributions of radioactivities were found in the liver, kidney, spleen. The relative concentration in tissue increased for the 6 hours and then decreased. In conclusion, most of C-14 chitosan was excreted through urine despite the difference of molecular weight. and, low molecular weight of C-14 chitosan showed higher distribution than high molecular weight of C-14 chitosan in tissues.

  • PDF

Effects of Hydrolysis pH on Distribution of Molecular Weights of Alginates of Sea Tangle Laminaria japonica (다시마 (Laminaria japonica) 알긴산의 분자량 분포에 미치는 가수분해 pH의 영향)

  • Lim, Yeong-Seon;You, Byeong-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.4
    • /
    • pp.313-317
    • /
    • 2006
  • To prepare oligouronic acids from high-molecular-weight alginates, sea tangle (Laminaria japonica) alginates were hydrolyzed at various pHs for 1 hr at 80$^{\circ}C$. The effects of hydrolysis pH (HpH) on the average molecular weight (AMW) and MW distribution ratios (DRs) in the hydrolyzed alginates were investigated. As HpH decreased, the DRs of the alginates with MW>500 kDa and MW=300-500 kDa decreased exponentially, while it increased exponentially for MW<50 kDa. For MW=100-300 kDa, DR increased exponentially as HpH fell from 5.0 to 3.5, and then decreased exponentially. Similarly, for MW=50-100 kDa, DR increased exponentially as HpH increased to 1.0 from 5.0, and then decreased exponentially. As HpH decreased, the MW cutoff size and AMW of alginates fraction with the highest DR were decreased. For HpH 4.5 and 5.0, the MW cutoff size with the highest DRs was MW=300-500 kDa; the DRs were 28.9 and 32.6%, respectively; and the AMW of both was about 400 kDa, for HpH 3.5 and 4.0, the cutoff size was MW=100-300 kDa; the DRs were about 28%: and the AMWs were both about 200 kDa. For HpH 3.0, the cutoff size was MW=50-100; the DR was 29.0%; and the AMW was 73 kDa. For HpH values below 2.0, the MW cutoff size with the highest DRs was MW<50 kDa, and all of the AMWs were below 28 kDa.

Molecular Dynamics Study of [C10mim][Br] Aggregation (분자동역학을 이용한 [C10mim][Br] 의 응집에 관한 연구)

  • Yoon, Hong-Min;Lee, Joon-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.873-876
    • /
    • 2012
  • Ionic liquids (ILs) existing in the liquid ion form under standard conditions show a unique properties. 1-10-Alkyl-3-methyl-imidazolium bromide ([C10mim][Br]) is one of the ILs that shows amphiphilic characteristics under specific conditions. This property enables it to function as a surfactant, and therefore, it finds applications in a wide range of areas. In this study, we tried to predict the behavior, especially the aggregation aspect, of [C10mim][Br] in an aqueous solution using molecular dynamics (MD) simulations. The canonical (NVT) ensemble was used to relax the system and trace the trajectory of atoms. Several case studies were simulated and the interaction among [C10mim]+, [Br]-, and water was analyzed using the radial distribution function of each atom. The density distribution function was also used for the structural analysis of the entire system. We used the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code for the present MD simulations.

Effects of Hydrolysis Temperature on the Distribution of the Molecular Weights of Alginates Prepared from Sea Tangle, Laminaria japonica (다시마 Laminaria iaponicus 알긴산의 분자량 분포에 미치는 가수분해 온도의 영향)

  • Lim, Yeong-Seon;You, Byeong-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.4
    • /
    • pp.187-192
    • /
    • 2007
  • To prepare oligouronic acids from high-molecular-weight alginates prepared from sea tangle (Laminaria japonica), the alginates were hydrolyzed at various temperatures for 1 hr at pH 5.0. The effects of hydrolysis temperature $(H_{Temp})$ on the average molecular weight (AMW) and distribution ratio of MW (DR) in the hydrolyzed alginates were investigated. As $(H_{Temp})$ increased, the AMW of the alginates decreased exponentially; in addition the DR of the alginates with MW>500 kDa decreased exponentially, while the DR of those with MW=50-100 and MW<50 kDa increased exponentially. For the alginates with MW=300-500 and MW=100-300 kDa the DR increased exponentially until $H_{Temp}$ reached $80^{\circ}C$, and then decreased exponentially at above $80^{\circ}C$. AS $H_{Temp}$ increased, the MW cutoff size and AMW Of the alginates fraction With the highest DR both decreased. For $H_{Temp}<60^{\circ}C$, the MW cutoff size with the highest DR was MW>500 kDa; the DR was 39-67% and the AMW 1,000-1,300 kDa. For $H_{Temp}$ $80^{\circ}C$, the MW cutoff size with the highest DR was MW=300-500 kDa and the DR was about 33% and the AMW about 400 kDa. For $H_{Temp}\;100-121^{\circ}C$, the MW cutoff size with the highest DRs was MW=50-100 kDa, with a DR of 39-44% and an AMW of 70-80 kDa.

The Molecular Profiling of a Teleostan Counterpart of Follistatin, Identified from Rock Bream Oplegnathus fasciatus which Reveals its Transcriptional Responses against Pathogenic Stress

  • Herath, H.M.L.P.B;Priyathilaka, Thanthrige Thiunuwan;Elvitigala, Don Anushka Sandaruwan;Umasuthan, Navaneethaiyer;Lee, Jehee
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.273-281
    • /
    • 2015
  • The follistatin (FST) gene encodes a monomeric glycoprotein that plays a role in binding and inhibiting the functions of members of the transforming growth factor (TGF)-${\beta}$ superfamily. Thus, FST facilitates a wide variety of functions, ranging from muscle growth, to inflammation and immunity. In this study, we sought to characterize an FST counterpart, RbFST, which was identified from rock bream Oplegnathus fasciatus. The RbFST cDNA sequence (2,419 bp) contains a 933-bp open reading frame (ORF) that encodes a putative amino acid sequence for RbFST (35 kDa). The putative amino acid sequence contains a Kazal-type serine protease inhibitor domain (51-98 residues) and an EF-hand, calcium-binding domain (191-226 residues). Additionally, this sequence shares a high identity (98.7%) with the Siniperca chuatsi FST sequence, with which it also has the closest evolutionary relationship according to a phylogenetic study. Omnipresent distribution of RbFST transcripts were detected in the gill, liver, spleen, head kidney, kidney, skin, muscle, heart, brain, and intestine of healthy animals, with significantly higher expression levels in the heart, followed by the liver tissue. Under pathogenic stress caused by two bacterial pathogens, Streptococcus iniae and Edwardsiella tarda, RbFST transcription was found to be significantly up-regulated. Altogether, our findings suggest the putative role of RbFST in immune related responses against pathogenic infections, further prefiguring its significance in rock bream physiology.

Prediction of Coagulation/Flocculation Treatment Efficiency of Dissolved Organic Matter (DOM) Using Multiple DOM Characteristics (다중 유기물 특성 지표를 활용한 용존 유기물질 응집/침전 제거효율 예측)

  • Bo Young Kim;Ka-Young Jung;Jin Hur
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.465-474
    • /
    • 2023
  • The chemical composition and molecular weight characteristics of dissolved organic matter (DOM) exert a profound influence on the efficiency of organic matter removal in water treatment systems, acting as efficiency predictive indicators. This research evaluated the primary chemical and molecular weight properties of DOM derived from diverse sources, including rivers, lakes, and biomasses, and assessed their relationship with the efficiency of coagulation/flocculation treatments. Dissolved organic carbon (DOC) removal efficiency through coagulation/flocculation exhibited significant correlations with DOM's hydrophobic distribution, the ratio of humic-like to protein-like fluorescence, and the molecular weight associated with humic substances (HS). These findings suggest that the DOC removal rate in coagulation/flocculation processes is enhanced by a higher presence of HS in DOM, an increased influence of externally sourced DOM, and more presence of high molecular weight compounds. The results of this study further posit that the efficacy of water treatment processes can be more accurately predicted when considering multiple DOM characteristics rather than relying on a singular trait. Based on major results from this study, a predictive model for DOC removal efficiency by coagulation/flocculation was formulated as: 24.3 - 7.83 × (fluorescence index) + 0.089 × (hydrophilic distribution) + 0.102 × (HS molecular weight). This proposed model, coupled with supplementary monitoring of influent organic matter, has the potential to enhance the design and predictive accuracy for coagulation/flocculation treatments targeting DOC removal in future applications.