• Title/Summary/Keyword: molecular design

Search Result 743, Processing Time 0.033 seconds

Microstructural Characteristics of III-Nitride Layers Grown on Si(110) Substrate by Molecular Beam Epitaxy

  • Kim, Young Heon;Ahn, Sang Jung;Noh, Young-Kyun;Oh, Jae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.327.1-327.1
    • /
    • 2014
  • Nitrides-on-silicon structures are considered to be an excellent candidate for unique design architectures and creating devices for high-power applications. Therefore, a lot of effort has been concentrating on growing high-quality III-nitrides on Si substrates, mostly Si(111) and Si(001) substrates. However, there are several fundamental problems in the growth of nitride compound semiconductors on silicon. First, the large difference in lattice constants and thermal expansion coefficients will lead to misfit dislocation and stress in the epitaxial films. Second, the growth of polar compounds on a non-polar substrate can lead to antiphase domains or other defective structures. Even though the lattice mismatches are reached to 16.9 % to GaN and 19 % to AlN and a number of dislocations are originated, Si(111) has been selected as the substrate for the epitaxial growth of nitrides because it is always favored due to its three-fold symmetry at the surface, which gives a good rotational matching for the six-fold symmetry of the wurtzite structure of nitrides. Also, Si(001) has been used for the growth of nitrides due to a possible integration of nitride devices with silicon technology despite a four-fold symmetry and a surface reconstruction. Moreover, Si(110), one of surface orientations used in the silicon technology, begins to attract attention as a substrate for the epitaxial growth of nitrides due to an interesting interface structure. In this system, the close lattice match along the [-1100]AlN/[001]Si direction promotes the faster growth along a particular crystal orientation. However, there are insufficient until now on the studies for the growth of nitride compound semiconductors on Si(110) substrate from a microstructural point of view. In this work, the microstructural properties of nitride thin layers grown on Si(110) have been characterized using various TEM techniques. The main purpose of this study was to understand the atomic structure and the strain behavior of III-nitrides grown on Si(110) substrate by molecular beam epitaxy (MBE). Insight gained at the microscopic level regarding how thin layer grows at the interface is essential for the growth of high quality thin films for various applications.

  • PDF

Desorption of organic Compounds from the Simulated Soils by Soil Vapor Extraction (인공토양으로부터 토양증기추출법에 의한 유기화합물의 탈착 현상에 관한 실험 연구)

  • 이병환;이종협
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.101-114
    • /
    • 1998
  • Soil vapor extraction (SVE) is known to be an effective process to remove the contaminants from the soils by enhancing the vaporization of organic compounds using forced vapor flows or applying vacuum through soils. Experiments are carried out to investigate the effects of the organic contaminants, types of soils, and water contents on the removal efficiency with operating time. In the study, simulated soils include the glass bead which has no micropore, sand and molecular sieve which has a large volume of micropores. As model organic pollutants, toluene, methyl ethyl ketone, and trichloroethylene are selected. Desorption experiments are conducted by flowing nitrogen gas. Under the experimental conditions, it is found that there are linear relationships between logarithm of removal efficiency and logarithm of number of pore volumes. The number of pore volumes are defined as the total amount of air flow through the soil column divided by the pore volume of soil column. For three organic compounds studied, the removal rate is slow for no water content, while the number of pore volumes for removal of organic compounds are notably reduced for water contents up to 37%. For the removal of dense organic compound, such as trichloroethylene, a large number of pore volumes are needed. Also, the effects of the characteristics of simulated soils on the removal efficiency of organic compounds are studied. After the characterization of soil surface, porosity of soil columns and types of contaminants, the results could provide a basis for the design of SVE process.

  • PDF

The Study of Genetic Diversity and Population Structure of the Korean Fleshy Shrimp, Fenneropenaeus chinensis, Using Newly Developed Microsatellite Markers (새로 개발한 미세위성체 마커를 이용한 한국 대하의 유전다양성 및 집단구조)

  • Shin, Eun-Ha;Kong, Hee Jeong;Nam, Bo-Hye;Kim, Young-Ok;Kim, Bong-Seok;Kim, Dong-Gyun;An, Cheul Min;Jung, Hyungtaek;Kim, Woo-Jin
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1347-1353
    • /
    • 2015
  • The fleshy shrimp, Fenneropenaeus chinensis, is the family of Penaeidae and one of the most economically important marine culture species in Korea. However, its genetic characteristics have never been studied. In this study, a total of 240 wild F. chinensis individuals were collected from four locations as follows: Narodo (NRD, n = 60), Beopseongpo (BSP, n = 60), Chaesukpo (CSP, n = 60), and Cheonsuman (CSM, n = 60). Genetic variability and the relationships among four wild F. chinensis populations were analyzed using 13 newly developed microsatellite loci. Relatively high levels of genetic variability (mean allelic richness = 16.87; mean heterozygosity = 0.845) were found among localities. Among the 52 population loci, 13 showed significant deviation from the Hardy–Weinberg equilibrium. Neighbor-joining, principal coordinate, and molecular variance analyses revealed the presence of three subpopulations (NRD, CSM, BSP and CSP), which was consistent with clustering based on genetic distance. The mean observed heterozygosity values of the NRD, CSM, BSP, and CSP populations were 0.724, 0.821, 0.814, and 0.785 over all loci, respectively. These genetic variability and differentiation results of the four wild populations can be applied for future genetic improvement using selective breeding and to design suitable management guidelines for Korean F. chinensis culture.

The optimization of extraction process on hemicellulose from rice bran (미강유래 식이섬유 헤미셀룰로오스의 추출 공정 최적화)

  • Jung, Ji-Eun;Choi, Yong-Hee
    • Food Science and Preservation
    • /
    • v.15 no.4
    • /
    • pp.532-541
    • /
    • 2008
  • A central composite design was applied to investigate the effects of the independent variables of NaOH concentration(X1) and extraction time(X2) on dependent variables such as Yield(Y1), Xyl/Ara ratio(Y2), uronic acid(Y3), $\beta$-glucan(Y4) and total sugars(Y5) of hemicelluloses separated from rice bran. The Coefficients of determination(R2) in various models ranged from 0.8626 to 0.9319. Yield increased with increased NaOH concentration and extraction time. The optimum extraction conditions were NaOH concentration at 2.45M and extraction time of 24.2 h. Predicted values at the optimized conditions were acceptable, compared with experimental values. The structural characteristics of an optimum hemicellulose extract were explored. As a result, it showed that the surfaces of hemicellulose had a highly irregular reticulated structure. And also it was both small and large molecular particle in the hemicelluloses. Their average molecular weights were in the ranges $235{\sim}240$ kDa and $8.0{\sim}9.4kDa$, respectively.

Application of Methodology for Microbial Community Analysis to Gas-Phase Biofilters (폐가스 처리용 바이오필터에 미생물 군집 분석 기법의 적용)

  • Lee, Eun-Hee;Park, Hyunjung;Jo, Yun-Seong;Ryu, Hee Wook;Cho, Kyung-Suk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.147-156
    • /
    • 2010
  • There are four key factors for gas-phase biofilters; biocatalysts(microorganisms), packing materials, design/operating techniques, and diagnosis/management techniques. Biofilter performance is significantly affected by microbial community structures as well as loading conditions. The microbial studies on biofilters are mostly performed on basis of culture-dependent methods. Recently, advanced methods have been proposed to characterize the microbial community structure in environmental samples. In this study, the physiological, biochemical and molecular methods for profiling microbial communities are reviewed, and their applicability to biofilters is discussed. Community-level physiological profile is based on the utilization capability of carbon substrate by heterotrophic community in environmental samples. Phospholipid fatty acid analysis method is based on the variability of fatty acids present in cell membranes of different microorganisms. Molecular methods using DNA directly extracted from environmental samples can be divided into "partial community DNA analysis" and "whole community DNA analysis" approaches. The former approaches consist in the analysis of PCR-amplified sequence, the genes of ribosomal operon are the most commonly used sequences. These methods include PCR fragment cloning and genetic fingerprinting such as denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism, ribosomal intergenic spacer analysis, and random amplified polymorphic DNA. The whole community DNA analysis methods are total genomic cross-DNA hybridization, thermal denaturation and reassociation of whole extracted DNA and extracted whole DNA fractionation using density gradient.

Application and perspectives of proteomics in crop science fields (작물학 분야 프로테오믹스의 응용과 전망)

  • Woo Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.12-27
    • /
    • 2004
  • Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant sciences. Plant proteomics would be most useful when combined with other functional genomics tools and approaches. A combination of microarray and proteomics analysis will indicate whether gene regulation is controlled at the level of transcription or translation and protein accumulation. In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is a most prevalent technique to identify rapidly a large of proteins in proteome analysis. However, the conventional Western blotting/sequencing technique us still used in many laboratories. As a first step to efficiently construct protein data-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein spots are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins (i. e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 30% of total rice cDNA have been deposited in the database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that fumed out to be calreticulin, gibberellin-binding protein, which is ribulose-1,5-bisphosphate carboxylase/oxygenase activate in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins (http://genome .c .kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Recently, we are separated proteins from grain filling and seed maturation in rice to perform ESI-Q-TOF/MS and MALDI-TOF/MS. This experiment shows a possibility to easily and rapidly identify a number of 2-DE separated proteins of rice by ESI-Q-TOF/MS and MALDI-TOF/MS. Therefore, the Information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful in the plant molecular breeding. Also, information from our study could provide a venue to plant breeder and molecular biologist to design their research strategies precisely.

  • PDF

Inhibitory Effect on Angiotensin-converting Enzyme (ACE) and Optimization for Production of Ovotransferrin Hydrolysates (Ovotransferrin 가수분해물의 Angiotensin-converting Enzyme 활성억제 효과 및 생산 최적화)

  • Lee, Na-Kyoung;Ahn, Dong-Uk;Park, Keun-Kyu;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.286-290
    • /
    • 2010
  • Angiotensin-converting enzyme (ACE) inhibitory activity and production optimization of ovotransferrin hydrolysates were studied. Ovotransferrin was hydrolyzed by several enzymes (protamex, alcalase, trypsin, pepsin, neutrase, and flavorzyme) and acid (0.03 N HCl). Ovotransferrin hydrolysate reduced ACE activity by 60.2%, 55.8%, and 42.6% when treated with trypsin, acid, and pepsin, respectively. Trypsin was selected for production of peptide having maximum AC inhibitory effect, which was greatest with 7 h hydrolysis. Central composite design determined that optimum composition of ACE inhibitory substances using substrate concentration of 20-35%, temperature of $35-55^{\circ}C$, and pH of 6.0-8.0. The optimum composition was 1% trypsin, substrate concentration of 26.32%, $51.29^{\circ}C$, and pH 6.32. Under this conditions, a maximum ACE inhibitory effect of 69.1% was evident, similar to the predicted value.

A novel method for high-frequency genome editing in rice, using the CRISPR/Cas9 system (벼에서 CRISPR/Cas9 활용 고빈도 유전자 편집 방법)

  • Jung, Yu Jin;Bae, Sangsu;Lee, Geung-Joo;Seo, Pil Joon;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.89-96
    • /
    • 2017
  • The CRISPR/Cas9 is a core technology that can result in a paradigm for breeding new varieties. This study describes in detail the sgRNA design, vector construction, and the development of a transgenic plant and its molecular analysis, and demonstrates how gene editing technology through the CRISPR/Cas9 system can be applied easily and accurately. CRISPR/Cas9 facilitates targeted gene editing through RNA-guided DNA cleavage, followed by cellular DNA repair mechanisms that introduce sequence changes at the site of cleavage. It also allows the generation of heritable-targeted gene mutations and corrections. Here, we present detailed procedures involved in the CRISPR/Cas9 system to acquire faster, easier and more cost-efficient gene edited transgenic rice. The protocol described here establishes the strategies and steps for the selection of targets, design of sgRNA, vector construction, and analysis of the transgenic lines. The same principles can be used to customize the versatile CRISPR/Cas9 system, for application to other plant species.

RNAi and miRNA in Viral Infections and Cancers

  • Mollaie, Hamid Reza;Monavari, Seyed Hamid Reza;Arabzadeh, Seyed Ali Mohammad;Shamsi-Shahrabadi, Mahmoud;Fazlalipour, Mehdi;Afshar, Reza Malekpour
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7045-7056
    • /
    • 2013
  • Since the first report of RNA interference (RNAi) less than a decade ago, this type of molecular intervention has been introduced to repress gene expression in vitro and also for in vivo studies in mammals. Understanding the mechanisms of action of synthetic small interfering RNAs (siRNAs) underlies use as therapeutic agents in the areas of cancer and viral infection. Recent studies have also promoted different theories about cell-specific targeting of siRNAs. Design and delivery strategies for successful treatment of human diseases are becomingmore established and relationships between miRNA and RNAi pathways have been revealed as virus-host cell interactions. Although both are well conserved in plants, invertebrates and mammals, there is also variabilityand a more complete understanding of differences will be needed for optimal application. RNA interference (RNAi) is rapid, cheap and selective in complex biological systems and has created new insight sin fields of cancer research, genetic disorders, virology and drug design. Our knowledge about the role of miRNAs and siRNAs pathways in virus-host cell interactions in virus infected cells is incomplete. There are different viral diseases but few antiviral drugs are available. For example, acyclovir for herpes viruses, alpha-interferon for hepatitis C and B viruses and anti-retroviral for HIV are accessible. Also cancer is obviously an important target for siRNA-based therapies, but the main problem in cancer therapy is targeting metastatic cells which spread from the original tumor. There are also other possible reservations and problems that might delay or even hinder siRNA-based therapies for the treatment of certain conditions; however, this remains the most promising approach for a wide range of diseases. Clearly, more studies must be done to allow efficient delivery and better understanding of unwanted side effects of siRNA-based therapies. In this review miRNA and RNAi biology, experimental design, anti-viral and anti-cancer effects are discussed.

Characterization of Functional Domains in NME1L Regulation of NF-κB Signaling

  • You, Dong-Joo;Park, Cho Rong;Mander, Sunam;Ahn, Curie;Seong, Jae Young;Hwang, Jong-Ik
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.403-409
    • /
    • 2016
  • NME1 is a well-known metastasis suppressor which has been reported to be downregulated in some highly aggressive cancer cells. Although most studies have focused on NME1, the NME1 gene also encodes the protein (NME1L) containing N-terminal 25 extra amino acids by alternative splicing. According to previous studies, NME1L has potent anti-metastatic activity, in comparison with NME1, by interacting with $IKK{\beta}$ and regulating its activity. In the present study, we tried to define the role of the N-terminal 25 amino acids of NME1L in $NF-{\kappa}B$ activation signaling. Unfortunately, the sequence itself did not interact with $IKK{\beta}$, suggesting that it may be not enough to constitute the functional structure. Further construction of NME1L fragments and biochemical analysis revealed that N-terminal 84 residues constitute minimal structure for homodimerization, $IKK{\beta}$ interaction and regulation of $NF-{\kappa}B$ signaling. The inhibitory effect of the fragment on cancer cell migration and $NF-{\kappa}B$-stimulated gene expression was equivalent to that of whole NME1L. The data suggest that the N-terminal 84 residues may be a core region for the anti-metastatic activity of NME1L. Based on this result, further structural analysis of the binding between NME1L and $IKK{\beta}$ may help in understanding the anti-metastatic activity of NME1L and provide direction to NME1L and $IKK{\beta}$-related anti-cancer drug design.