• 제목/요약/키워드: molecular clouds

검색결과 176건 처리시간 0.023초

A SEARCH FOR MOLECULAR CLOUDS AT HIGH GALACTIC LATITUDE

  • Chi Seung-Youp;Park Yong-Sun
    • 천문학회지
    • /
    • 제39권1호
    • /
    • pp.19-24
    • /
    • 2006
  • We carried out CO survey toward IR-excess clouds using SRAO 6-m telescope in search of molecular $H_2$. These clouds, which show far-infrared excess over what is expected from HI column density, are considered to be candidates of molecular clouds. In order to find new high Galactic latitude clouds, we made mapping observations for 14 IR-excess clouds selected from Reach et al.(1998) in $^{12}CO$ J = 1 - 0 line, supplementing the similar survey in southern hemisphere (Onishi et al. 2001). $^{12}CO$ emission is detected from three IR-excess clouds among 14 objects. Three newly detected clouds exhibit somewhat clumpy morphology and column densities amount to ${\sim}10^{21}\;cm^{-2}$. One of three clouds, DIR120-28, show discrepancy between IR-excess center and CO emission center. It seems that IR-excess may not be an effective tracer of molecular gas. Instead, optical depth$(\tau)$ excess, i.e., IR-excess corrected for temperature dependence, may be more effective tracer of molecular clouds, since, by combining statistics from both hemispheres, we found that the detection rate is higher for IR-excess clouds with lower dust temperature.

CENSUS AND ANALYSIS OF GALACTIC MOLECULAR CLOUDS

  • HOJAEV, A.S.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.107-108
    • /
    • 2015
  • In this project, all available databases of molecular and gas-dust clouds in the Galaxy were cross-identified by taking into account available properties, including position, angular dimensions, velocity, density, temperature and mass. An initial list of about 7000 entries was condensed into a cross-identified all-sky catalogue containing molecular and gas-dust clouds. Some relationships were studied between the main physical features of clouds. Finally, we prepared a complex observing program and address future work for filling in the gaps.

DISTANCE DETERMINATION TO THE MOLECULAR CLOUDS IN THE GALACTIC ANTI-CENTER REGION

  • KIM HYUN-GOO;LEE YOUNGUNG;PARK BYEONG-GON;KIM BONG-GYU
    • 천문학회지
    • /
    • 제33권3호
    • /
    • pp.151-158
    • /
    • 2000
  • We conducted a deep CCD observations in V band to obtain stellar density distribution and to determine the distances toward two molecular clouds with anomalous velocity in the Galactic anti-center region. Star count method based on the linear programming technique was applied to the CCD photometric data. We found two prominent peaks at distances of around 1.4 and 2.7 kpc. It is found that the first peak coincides well with stellar density enhancement of B8-A0 stars and the second one with the outer Perseus arm. The effect of the choice of the luminosity function is discussed. The stellar number density distribution is used to derive the distances to the molecular clouds and the visual extinctions caused by the clouds. We found that two molecular clouds are located almost at the same distance of about 1.1 $\pm$ 0.1 kpc, and the peak extinctions caused by the clouds are about 2.2 $\pm$ 0.3 mag in V band.

  • PDF

THE DYNAMICAL STRUCTURES OF DENSE MOLECULAR CLOUDS IN THE GALACTIC CENTER REGION & THEIR IMPLICATIONS

  • LEE C. W.;LEE H. M.;ANN H. B.;KWON K. H.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.161-163
    • /
    • 1996
  • We have studied the response of molecular clouds in the Galactic disk to a rotating bar by conducting Smoothed Particle Hydrodynamics (SPH) simulations for the Galaxy in order to understand the dynamical structures of the Galactic Center (GC) molecular clouds, and their implications. In our study it was found that the structures of GC molecular clouds could be induced by the combined effects of rotating bar potential, the hydrodynamic collisions and gravitational miss collisions between the clouds.

  • PDF

Turbulence in Molecular clouds : Observation versus Simulation

  • 조현진;강혜성;류동수;김종수;조정연
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • We have studied the statistical properties of turbulence in molecular clouds identified in the Boston University - Five College Radio Astronomy Observatory (BU-FCRAO) Galactic Ring Survey (GRS). Toward this end, the probability density function (PDF) and velocity distribution were measured for about 50 molecular clouds. We found there exists a good correlation between the PDF width and the velocity dispersion for these molecular clouds. In order to investigate how general properties of astrophysical turbulence depends on the plasma parameters such as magnetic field strength and sonic Mach number, we performed three-dimensional MHD simulations. We then examined if the observed characteristics of interstellar turbulence are consistent with theoretical results from MHD simulations.

  • PDF

TRAO Survey of Nearby Filamentary Molecular Clouds, the Universal Nursery of Stars (TRAO FUNS). III. Dynamics of filaments in different star forming environments

  • Chung, Eun Jung;Kim, Shinyoung;Yoo, Hyunju;Lee, Chang Won
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.69.2-69.2
    • /
    • 2019
  • Recent high resolution IR observations reveal that molecular clouds are filamentary and such a structure is ubiquitous over various star-forming environments, and it is clear that filaments play a crucial role in the formation of cores and stars. However, the formation process of dense cores in the filaments are still unknown. To investigate this issue in detail, we have carried out TRAO FUNS (TRAO survey of nearby Filamentary molecular clouds, the Universal Nursery of Stars) toward various star forming filamentary molecular clouds. In this presentation, we will report the first look results of filaments and dense cores in MCLD 123.5+24.9 and IC 5146, which are known as a quiescent, non-star-forming region and an active, high-mass star forming region, respectively. By comparing the kinematic properties of filaments and dense cores in different star forming environments, we verified the formation scenario of filaments and dense core, i.e., gravoturbulent fragmentation via supersonic motions.

  • PDF

TIMES: mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale. I. the first result.

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Evans, Neal J. II;Offner, Stella S.R.;Lee, Yong-Hee;Baek, Giseon;Choi, Minho;Kang, Hyunwoo;Lee, Seokho;Tatematsu, Ken'ichi;Heyer, Mark H.;Gaches, Brandt A.L.;Yang, Yao-Lun;Jung, Jae Hoon;Lee, Changhoon
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.42.2-42.2
    • /
    • 2019
  • Turbulence is one of the natural phenomena in molecular clouds. It affects gas density and velocity fluctuation within the molecular clouds and controls the mode and tempo of star formation. However, despite many years of study, the properties of turbulence remain poorly understood. As part of the Taeduk Radio Astronomy Observatory (TRAO) Key Science Program (KSP), "mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale (TIMES; PI: Jeong-Eun Lee)", we have fully mapped two star-forming molecular clouds, the Orion A and the Ophiuchus molecular clouds, in 3 sets of lines ($^{13}CO$ J=1-0, $C^{18}O$ J=1-0, HCN J=1-0, $HCO^+$ J=1-0, CS J=2-1, and $N_2H^+$ J=1-0) using the TRAO 14-m telescope. We apply a statistical analysis, Principal Component Analysis (PCA), which can recover an underlying turbulent-power spectrum from an observed P-P-V spectral map. We compare turbulence properties not only between the two clouds, but also between different parts within each cloud. We present the first result of our observation program.

  • PDF

AKARI, SCUBA2 AND HERSCHEL DATA OF PRE-STELLAR CORES

  • Ward-Thompson, D.;Pattle, K.;Kirk, J.M.;Andre, P.;Di Francesco, J.
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.117-121
    • /
    • 2017
  • We show Akari data, Herschel data and data from the SCUBA2 camera on JCMT, of molecular clouds. We focus on pre-stellar cores within the clouds. We present Akari data of the L1147-1157 ring in Cepheus and show how the data indicate that the cores are being externally heated. We present SCUBA2 and Herschel data of the Ophiuchus region and show how the environment is also affecting core evolution in this region. We discuss the effects of the magnetic field in the Lupus I region, and how this lends support to a model for the formation and evolution of cores in filamentary molecular clouds.

Turbulent Properties in the Orion A and ρ Ophiuchus molecular clouds: Observations and preliminary results

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Lee, Seokho;Baek, Giseon;Lee, Yong-Hee;Choi, Minho;Kang, Hyunwoo;Tatematsu, Ken'ichi;Offner, Stella S.R.;Gaches, Brandt A.L.;Heyer, Mark H.;Evans, Neal J. II;Yang, Yao-Lun
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.79.3-80
    • /
    • 2017
  • Molecular clouds are the sites of stellar birth. Turbulence is a natural phenomenon in molecular clouds, which largely determines the density and velocity fields. Additionally turbulent energy dissipation can affect the gas kinetic temperature via shocks. Turbulence thus controls the mode and tempo of star formation. However, despite its important role in star formation, the properties of turbulence remain poorly understood. As part of the Taeduk Radio Astronomy Observatory (TRAO) Key Science Program (KSP), "Mapping turbulent properties of star-forming molecular clouds down to the sonic scale (PI: Jeong-Eun Lee)", we have been mapping two star-forming clouds, the Orion A and the ${\rho}$ Ophiuchus molecular clouds in 3 sets of lines (13CO 1-0/C18O 1-0, HCN 1-0/HCO+ 1-0, and CS 2-1/N2H+ 1-0) using the TRAO 14-m telescope. We apply a Principal Component Analysis (PCA), which is an useful tool to represent turbulent power spectrum. We will present the preliminary results of our TRAO KSP toward two regions: OMC 1-4 in the Orion A cloud, and L1688 in the ${\rho}$ Ophiuchus cloud.

  • PDF

Turbulent Properties in Two Molecular Clouds: Orion A and ρ Ophiuchus

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Lee, Seokho;Choi, Minho;Kang, Hyunwoo;Tatematsu, Ken'ichi;Offner, Stella S.R.;Gaches, Brandt A.L.;Heyer, Mark H.;Evans, Neal J. II;Yang, Yao-Lun
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.33.1-33.1
    • /
    • 2017
  • Molecular clouds are the sites of stellar birth, and conditions within the clouds control the mode and tempo of star formation. In particular, turbulence largely determines the density and velocity fields, and can affect the gas kinetic temperature as it decays via shocks. However, despite its central role in star formation and many years of study, the properties of turbulence remain poorly understood. As a part of the TRAO key science program, "Mapping turbulent properties of star-forming molecular clouds down to the sonic scale (PI: Jeong-Eun Lee)", we mapped the northern region of the Orion A molecular cloud and the L1688 region of the ${\rho}$ Ophiuchus molecular cloud in 2 sets of lines (13CO 1-0/C18O 1-0 and HCN 1-0/and HCO+ 1-0) using the Taeduk Radio Astronomy Observatory (TRAO) 14-m telescope. We analyze these maps using a python package 'Turbustat', a toolkit which contains 16 different turbulent statistics. We will present the preliminary results of our TRAO observations and various turbulence statistical analyses.

  • PDF