• Title/Summary/Keyword: molecular cloning

Search Result 1,139, Processing Time 0.042 seconds

Molecular Cloning and Expression of the Acetyl Xylan Esterase Gene(estII) of Bacillus Stearothermophilus in Escherichia coli (Bacillus stearothermophilus Acetyl Exterase 유전자(estII)의 클로닝과 Escherichia coli에서의 발현)

  • Kim, Hee-Sun;Eom, Soo-Jung;Cho, Ssang-Goo;Choi, Yong-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.599-606
    • /
    • 1994
  • Bacillus stearothermomophilus, a strong xylan degrader, was confirmed to express multiple esterase activities in addition to the major xylanolytic enzymes. One of the genes encoding the esterases was isolated from the genomic library of B. stearothermophilus constructed with EcoRl restriction endonuclease and pBR322 plasmid. Three recombinant plasmids showing the tributyrin degrading activity were selected from approximately 7, 000 E. coli HB101 transformants, and were found to have the same insert of a 3.2 kb DNA fragment. Restriction mapping and hybridization studies revealed that the gene(estII) on the hybrid plasmid (pKMG7) had originated from the B. stearothermophilus chromosome, and was distinct from the estl, another esterase gene of B. stearothermophilus isolated in the previous work. The E. coli cells harboring pKMG7 produced an acetylxylan esterase that exibited similar substrate specificity to the esterase encoded by the estI gene.

  • PDF

Molecular cloning and characterization of Izumo1 gene from bovine testis

  • Kim, Ekyune
    • Journal of Animal Science and Technology
    • /
    • v.57 no.4
    • /
    • pp.16.1-16.7
    • /
    • 2015
  • A well-characterized sperm specific protein of the Member of immunoglobulin superfamily, IZUMO1, has crucial role in fertilization by mediating sperm binding to the egg plasma membrane in the mouse. However little is known about IZUMO1 in bovine. Here, we describe the molecular cloning and expression analysis of bovine IZUMO1 (bIZUMO1). RT-PCR and Western blot analysis of the bovine tissues indicated that bIZUMO1 was specifically expressed in the testis and sperm, Furthermore, the result of our biotinylation assay from ejaculated bovine sperm strongly suggest the assumption that bIZUMO1 is localized on the cell surface. These data imply the potential role of bovine IZUMO1 in mammalian fertilization.

Molecular Cloning and Expression of the Acetyl Xylan Esterase Gene of Bacillus stearothermophilus in Escherichia coli (Bacillus stearothermophilus Acetyl Xylan Esterase 유전자의 크로닝과 Escherichia coli에서의 발현)

  • 김인숙;조쌍구;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.542-548
    • /
    • 1993
  • Bacillus stearothermophilus was shown to express multiple xylanolytic enzymes including acetyl xylan esterase. Genomic DNA of the strain partially digested with HindIII was ligated into the HindIII site of pBR322, and expressed in E. coli HB101 cells in order to clone the gene for acetyl xylan esterase. One transformant among 4000 screened formed a clear zone around its colony on the LB agar supplemented with 1.0% tributyrin. The functional clone harbored the recombinant plasmid pKMG5 with an insert of 5.1kb.

  • PDF

Isolation of $\beta$-Lactamase Inhibitory Protein from Streptomyces exfoliatus SMF19 and Cloning of the Corresponding Gene

  • PARK, HYEON-UNG;KYE JOON LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.369-374
    • /
    • 1996
  • The ${\beta}$-lactamase inhibitory protein (BLIP) produced by Streptomyces exfoliatus SMF19 was purified(33 kDa) and the N-terminal amino acid sequence was determined as NH2-ATSVVAWGGNND. Genomic DNA library of S. exfoliatus SMF19 was constructed in pWE15 and recombinants harbouring the corresponding gene were selected by colony hybridization to the mixture of 36-mer oligonucleotide designed from the N-terminal amino acid sequence. The corresponding gene (bliX) was isolated on a 4-kb ApaI fragment of S. exfoliatus SMF19 chromosomal DNA and then sequenced. The bliX consisting of 1, 119bp encoded a mature protein with a deduced amino acid sequence of 342 residues and also encoded a 40-amino-acid signal sequence. No significant sequence similarity to bliX was found by pairwise comparison using various protein and nucleotide sequences.

  • PDF

Replication of deoxyribonucleic acid (DNA) with respect to gene technology

  • Esser, Karl;Oeser, Birgitt
    • The Microorganisms and Industry
    • /
    • v.12 no.1
    • /
    • pp.28-34
    • /
    • 1986
  • Nucleic acids do not only carry the genetic information, but are also the only substances being able of self-replication. Molecular cloning, an essential tool in biotechnology, requires among other things, an understanding of the mechanisms of replication which at present is fairly well known. After an introduction to the general principle, the status of art on replication procedure and its implication for biotechnology are dealt with.

  • PDF

A Journey to Understand Glucose Homeostasis: Starting from Rat Glucose Transporter Type 2 Promoter Cloning to Hyperglycemia

  • Ahn, Yong Ho
    • Diabetes and Metabolism Journal
    • /
    • v.42 no.6
    • /
    • pp.465-471
    • /
    • 2018
  • My professional journey to understand the glucose homeostasis began in the 1990s, starting from cloning of the promoter region of glucose transporter type 2 (GLUT2) gene that led us to establish research foundation of my group. When I was a graduate student, I simply thought that hyperglycemia, a typical clinical manifestation of type 2 diabetes mellitus (T2DM), could be caused by a defect in the glucose transport system in the body. Thus, if a molecular mechanism controlling glucose transport system could be understood, treatment of T2DM could be possible. In the early 70s, hyperglycemia was thought to develop primarily due to a defect in the muscle and adipose tissue; thus, muscle/adipose tissue type glucose transporter (GLUT4) became a major research interest in the diabetology. However, glucose utilization occurs not only in muscle/adipose tissue but also in liver and brain. Thus, I was interested in the hepatic glucose transport system, where glucose storage and release are the most actively occurring.