• Title/Summary/Keyword: molecular charge

Search Result 446, Processing Time 0.029 seconds

Evaluation and Application of Retention Aids for Papermaking System Closure

  • Lee, Hak-Lae;Sung, Yong-Joo;Youn, Hye-Jung;Kim, Yong-Sik;Oh, Jong-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.11-17
    • /
    • 1998
  • Reducing the effluent discharge from a paper mill is urgently needed due to tightening environmental regulations and economic reasons. For a paper mill to respond to system closure it is required to adopt the best practical retention system that enables the mill to improve fines retention and drainage. In this study, effects of various retention agents on fines retention, drainage and formation were examined using linerboard stock in the laboratory. Among the retention aids tested, high molecular weight cationic polyacrylamides showed good efficiency both in retention and drainage. On the other hand, high charge density, low molecular weight polymeric retention aids showed little improvement both in retention and drainage. The best retention system selected from the laboratory experiment was applied on a paper machine producing linerboard to evaluate its effect on papermaking system closure.

  • PDF

Study on Charge Transport in Nanoscale Organic Monolayers for Molecular Electronics Using Liquid Phase Electrodes

  • Hwang, Jin-Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.235-241
    • /
    • 2005
  • Incorporation of solid electrodes frequently involves plasma-based processing. The effect of plasma can influence the physical characteristics, depending on the magnitude in plasma. The undesired feature of plasma-induced damage should be prevented in characterizing the ultra-thin materials, such as ultra-thin films and organic monolayers. The current work at first proves the applicability of a liquid phase electrode in the electrical/dielectric properties through comparative work using Al and Hg on ultrathin $Al_2O_3$ films deposited through atomic layer deposition at low temperature: Two types of metals such as Aluminum (Al) and mercury (Hg) were used as electrodes in $Al_2O_3$ thin films in order to investigate the effect of electrode preparation on the current-voltage characteristics and impedance features as a function of thickness in $Al_2O_3$ film thickness. The success of Hg in $Al_2O_3$ thin films is applied to the AC and DC characterization of the organic monolayers obtained using the Langmuir-Blodgett method. From the DC current-voltage characteristics, the diode-like response is found to originate from the bulk response of the organic materials, evidenced by the fact and the capacitance is inversely related to the absolute thickness of organic layers.

  • PDF

Bonding And Anti-bonding Nature of Magnetic Semiconductor Thin Film of Fe(TCNQ:tetracyanoquinodimethane)

  • Jo, Junhyeon;Jin, Mi-jin;Park, Jungmin;Modepalli, Vijayakumar;Yoo, Jung-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.294-294
    • /
    • 2014
  • Developing magnetic thin films with desirable physical properties is a key step to promote research in spintronics. Organic-based magnetic material is a relatively new kind of materials which has magnetic properties in a molecular and microscopic level. These materials have been constructed by the coordination between 3d transition metal and organic materials producing long-range magnetic orders with a relatively high transition temperature. However, these materials were mostly synthesized as a form of powder, which is difficult to study for their physical properties as well as apply for electronic/spintronic devices. In this study, we have employed physical vapor deposition (PVD) to develop a new organic-based hybrid magnetic film that is achieved by the coordination of Fe and tetracyanoquinodimethane (TCNQ). The IR spectra of the grown film show modified CN vibration modes in TCNQ, which suggest a strong bonding between Fe and TCNQ. The thin film has both ferromagnetic and semiconducting behaviors, which is suitable for molecular spintronic applications. The high resolution photoemission (HRPES) spectra also show shift of 1s peak point of nitrogen and the carbon 1s peaks display traces of charge transfer from Fe to TCNQ as well as shake-up features, which suggest strong bonding and anti-bonding nature of coordination between Fe and TCNQ.

  • PDF

Dielectric Characteristics in Smectic Phase

  • Song, Jun-Ho;Coi, Suck;Kim, Yong-Bae;Kumar, Satyendra;Souk, Jun-Hyung;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.419-422
    • /
    • 2002
  • We have studied dielectric properties in the smectic phases of 4-(6-ethoxy-1-trifluoromethyl-hexyloxycarbonyl)-phenyl-4-Nonyloxybiphenyl-4-carboxylat ( TFMEOHPNBC ) having fluorine attached to one of its benzene rings. Homogeneous and homeotropic 1.5 and 5${\mu}m$ thick test cells were prepared to analyze molecular dynamic property. We measured capacitance as a function of temperature in the frequency range between 20 Hz and 100 kHz by using HP4284A LCR meter. We observed that the homogeneous cell has high dielectric constant causing dipole moment in smectic $C^{\ast}$ phase, but we can see the dipole moments are canceled out in antiferroelectric phase. It is found that there are two kind of the relaxation director fluctuation below 100 kHz. The first is ionic or space charge contribution below 10 Hz, and the second is Goldstone mode near 1-2 kHz. We will discuss molecular dynamics in smectic phase from extra information such as x-ray and electrooptic data.

  • PDF

Optimization of Staphylokinase Production in Bacillus subtilis Using Inducible and Constitutive Promoters

  • Kim, June-Hyung;Wong, Sui-Lam;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.167-172
    • /
    • 2001
  • Staphylokinase (SAK) was produced in B. subtilis using two different promoter systems, i.e. the P43 and sacB promoters. To maximize SAK expression in B. subtilis, fermentation control strategies for each promoter were examined. SAK, under P43, a vegetative promoter transcribed mainly by $\sigma$(sup)B containing RNA polymerase, was overexpressed at low dissolved oxygen (D.O.) levels, suggesting that the sigB operon is somewhat affected by the energy charge of the cells. The expression of SAK at the 10% D.O. level was three times higher than that at the 50% D.O. level. In the case of sacB, a sucrose-inducible promoter, sucrose feeding was used to control the induction period and induction strength. Since sucrose is hydrolyzed by two sucrose hydrolyzing enzymes in the cell and culture broth, the control strategy was based on replenishing the loss of sucrose in the culture. With continuous feeding of sucrose, WB700 (pSAKBQ), which contains the SAK gene under sacB promoter, yielded ca. 35% more SAK than the batch culture. These results present efficient promoter-dependent control strategies in B. subtilis host system for foreign protein expression.

  • PDF

Adsorption Behavior of Sr Ion on Calcium-Alginate-Chitosan (Calcium-Alginate-Chitosan의 스트론튬 이온 흡착 거동)

  • Lan, Dong;Bing, Deng;Lanlan, Ding;Qiong, Cheng;Yong, Yang;Yang, Du
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.557-565
    • /
    • 2014
  • Sodium alginate and chitosan are added to a $CaCl_2$ solution to prepare calcium-alginate-chitosan and calciumalginate gels. After dehydration through stoving, two types of adsorbent particles are obtained. The adsorption process of the particles obtained for low concentrations of $Sr^{2+}$ satisfies a second-order kinetic equation and the Freundlich adsorption model. The thermodynamic behaviors of the particles indicate that adsorption occurs via a spontaneous physical process. XPS pattern analysis is used to demonstrate the adsorption of $Sr^{2+}$ by calcium alginate and chitosan. By building an interaction model of the molecules of chitosan and alginate with $Ca^{2+}$ and $Sr^{2+}$ to calculate energy parameters, Fukui index, Mulliken charge, and Mulliken population, adsorption of $Sr^{2+}$ on the molecular chains of chitosan as well as the boundary of calcium-alginate-chitosan is observed to show weak stability; by contrast, adsorption between molecular chains is high.

Energy Level Alignment between Hole Injecting HAT-CN and Metals and Organics: UPS and ab-initio Calculations

  • Kang, H.;Kim, J.H.;Kim, J.K.;Kwon, Y.K.;Kim, J.W.;Park, Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.108-111
    • /
    • 2009
  • We have determined the electronic energy level alignment at the interface between 4,4'-bis-N-phenyl-1-naphthylamino biphenyl (NPB) and 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT-CN) using ultraviolet photoelectron spectroscopy (UPS). The highest occupied molecular orbital (HOMO) of 20 nm thick HAT-CN film was located at 3.8 eV below the Fermi level. Thus the lowest unoccupied molecular orbital (LUMO) is very close to the Fermi level. The HOMO position of NPB was only about 0.3 eV below Fermi level at NPB/HAT-CN interface. This enables an easy excitation of electrons from the NPB HOMO to the HAT-CN LUMO, creating electron-hole pairs across this organic-organic interface. We also study the interaction of HAT-CN with a few metallic surfaces including Ca, Cu, and ITO using UPS and ab-inito electronic structure calculation techniques.

  • PDF

Potential Energy Surfaces for the Reaction Al + O2→ AlO + O

  • Ledentu, Vincent;Rahmouni, Ali;Jeung, Gwang-Hi;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1645-1647
    • /
    • 2004
  • Potential energy surfaces for the reaction Al + $O_2{\to}$AlO + O have been calculated with the multireference configuration interaction (MRCI) method using molecular orbitals derived from the complete active space selfconsistent field (CASSCF) calculations. The end-on geometry is the most favourable for the reaction to take place. The small reaction barrier in the present calculation (0.11 eV) is probably an artefact related to the ionicneutral avoided crossing. The charge analysis implies that the title oxidation reaction occurs through a harpooning mechanism. Along the potential energy surface of the reaction, there are two stable intermediates of $AlO_2(C_{{\infty}v}$ and $C_{2v}$) at least 2.74 eV below the energy of reactants. The calculated enthalpy of the reaction (-0.07 eV) is in excellent agreement with the experimental value (-0.155 eV) in part due to the fortuitous cancellation of errors in AlO and $O_2$ calculations.

Attractive Sulfur...π Interaction between Fluorinated Dimethyl Sulfur (FDMS) and Benzene

  • Yan, Shihai;Lee, Sang-Joo;Kang, Sun-Woo;Choi, Kwang-Hyun;Rhee, Soon-Ki;Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.959-964
    • /
    • 2007
  • The benzene complexes with dimethyl sulfur (DMS) and fluorinated DMS (FDMS) have been investigated using ab initio calculations. The natural bond orbital (NBO) charge population on S atom varies remarkably for different conformations of DMS and FDMS, which determines the possible binding modes for their benzene complexes. The electronegative substituent at the methyl group of DMS causes a significant change in the molecular electrostatic potential around the sulfur atom and changes the interaction mode with aromatic ring. It was found that the sulfur…π interaction mode does not occur in the DMS-benzene complex, while it does in the FDMS-benzene complex. Both B3LYP and MP2 methods provide reliable structures, while the interaction energy obtained by B3LYP is unreliable.

Electrochemical Oxidation of Ethanol at Nickel Hydroxide Electrodes in Alkaline Media Studied by Electrochemical Impedance Spectroscopy

  • Kim, Jae-Woo;Park, Su-Moon
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 2005
  • Electrochemical oxidation of ethanol at nickel electrodes has been studied in 1 M KOH solution containing 0.20M ethanol using electrochemical impedance spectroscopy. Equivalent circuits have been worked out by simulating the impedance data, and the results were used to model the oxidation of ethanol as well as the passivation of the electrode. The maximum rate of oxidation of $Ni(OH)_2$ to NiOOH was observed at about 0.37V vs. Ag/AgCl reference electrode, while the maximum rate of ethanol oxidation at the Ni electrode was observed at about 0.42V, The charge-transfer resistance for oxidation of the electrode itself became smaller in the presence of ethanol than in its absence. These results suggest that the $\beta-Ni(OH)_2/\beta-NiOOH$ redox couple is acting as an effective electron transfer mediator far ethanol oxidation. The kinetic parameters also were obtained by the experimental and simulated results.