• Title/Summary/Keyword: molecular bonding

Search Result 289, Processing Time 0.03 seconds

Understanding Behaviors of Electrolyzed Water in Terms of Its Molecular Orbitals for Controlling Electrostatic Phenomenon in EUV Cleaning (EUV 세정에서 정전기 제어를 위한 전해이온수 거동의 분자궤도 이해)

  • Kim, Hyung-won;Jung, Youn-won;Choi, In-sik;Choi, Byung-sun;Kim, Jae-young;Ryoo, Kun-kul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.6-13
    • /
    • 2022
  • The electrostatic phenomenon seriously issued in extreme ultraviolet semiconductor cleaning was studied in junction with molecular dynamic aspect. It was understood that two lone pairs of electrons in water molecule were subtly different each other in molecular orbital symmetry, existed as two states of large energy difference, and became basis for water clustering through hydron bonds. It was deduced that when hydrogen bond formed by lone pair of higher energy state was broken, two types of [H2O]+ and [H2O]- ions would be instantaneously generated, or that lone pair of higher energy state experiencing reactions such as friction with Teflon surface could cause electrostatic generation. It was specifically observed that, in case of electrolyzed cathode water, negative electrostatic charges by electrons were overlapped with negative oxidation reduction potentials without mutual reaction. Therefore, it seemed that negative electrostatic development could be minimized in cathode water by mutual repulsion of electrons and [OH]- ions, which would be providing excellences on extreme ultraviolet cleaning and electrostatic control as well.

Molecular Design for the Formation of Two-dimensional Molecular Networks: STM Study of ${\gamma}$-phenylalanine on Au(111)

  • Jeon, A-Ram;Youn, Young-Sang;Lee, Hee-Seung;Kim, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.205-205
    • /
    • 2011
  • The self-assembly of ${\gamma}$-phenylalanine on Au(111) at 150 K was investigated using scanning tunneling microscopy (STM). Phenylalanine can potentially form two-dimensional (2D) molecular networks through hydrogen bonding (through the carboxyl and amino groups) and ${\pi}-{\pi}$ stacking interactions (via aromatic rings). We found that ${\gamma}$-phenylalanine molecules self-assembled on Au(111) surfaces into well-ordered structures such as ring-shaped clusters (at low and intermediate coverages) and 2D molecular domains (intermediate and monolayer coverages), whereas ${\alpha}$-phenylalanine molecules formed less-ordered structure on Au(111). The self-assembly of ${\gamma}$- but not ${\alpha}$-phenylalanine may be related to the flexibility of the carboxyl and amino groups in the molecule. Moreover, as expected, the 2D molecular network of ${\gamma}$-phenylalanine on Au(111) was mediated by a combination of hydrogen bonding and ${\pi}-{\pi}$ stacking interactions.

  • PDF

Bonding And Anti-bonding Nature of Magnetic Semiconductor Thin Film of Fe(TCNQ:tetracyanoquinodimethane)

  • Jo, Junhyeon;Jin, Mi-jin;Park, Jungmin;Modepalli, Vijayakumar;Yoo, Jung-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.294-294
    • /
    • 2014
  • Developing magnetic thin films with desirable physical properties is a key step to promote research in spintronics. Organic-based magnetic material is a relatively new kind of materials which has magnetic properties in a molecular and microscopic level. These materials have been constructed by the coordination between 3d transition metal and organic materials producing long-range magnetic orders with a relatively high transition temperature. However, these materials were mostly synthesized as a form of powder, which is difficult to study for their physical properties as well as apply for electronic/spintronic devices. In this study, we have employed physical vapor deposition (PVD) to develop a new organic-based hybrid magnetic film that is achieved by the coordination of Fe and tetracyanoquinodimethane (TCNQ). The IR spectra of the grown film show modified CN vibration modes in TCNQ, which suggest a strong bonding between Fe and TCNQ. The thin film has both ferromagnetic and semiconducting behaviors, which is suitable for molecular spintronic applications. The high resolution photoemission (HRPES) spectra also show shift of 1s peak point of nitrogen and the carbon 1s peaks display traces of charge transfer from Fe to TCNQ as well as shake-up features, which suggest strong bonding and anti-bonding nature of coordination between Fe and TCNQ.

  • PDF

Theoretical Studies of Hydrogen Bonded Dimers AM1 Study of Hydrogen-Bonding Energies of MeOH-solvent Binary Systems (水素結合 이합체에 關한 理論的인 硏究, 메탄올-溶妹 이성분계에 대한 水素結合 에너지의 AM1 的 硏究)

  • Shi Choon Kim;Myoung Ok Park
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.249-259
    • /
    • 1988
  • The solvent effects of MeOH-solvent dimers were studied via AM1 Hamiltonian and supermolecule methods. Methanol, ethanol, acetone, dimethylsulfoxide, N,N-dimethylformamide, tetrahydrofuran, dioxane, and acetonitrile were considered as solvent molecules. Optimized geometries, electron densities, molecular energies, and hydrogen-bonding energies of monomers and dimers were calculated. We found that the stabilization energies contributed to the hydrogen-bonding were decreased in the order of dimethylsulfoxide > ethanol > N,N-dimethylformamide > acetone > methanol > tatrahydrofuran > dioxane > acetonitrile, and this order was explained by using the change of electron density and energy partition functions.

  • PDF

The simulation of tensile and bonding process in nano-size (나노 단위 금속 원자의 인장 및 접합 공정 시뮬레이션)

  • 박성재;이세헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1182-1185
    • /
    • 2003
  • Recently, the research of the nano technology has been done on a lot of area over the world. Especially, the interest of them is much higher for semiconductor companies and other super accuracy processing area. In this thesis, we have approached the characteristic of the tensile and bonding of copper, frequently used to nano wires, by molecular dynamics simulation. And the simulation was done by EAM, Embedded Atom Method which has the most highest accuracy for metal. Then the feature of copper at atom space is understood through the simulation of nano wire.

  • PDF

Electronic Structure and Bonding Configuration of Histidine on Ge(100)

  • Lee, Han-Gil;Youn, Young-Sang;Yang, Se-Na;Jung, Soon-Jung;Kim, Se-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3217-3220
    • /
    • 2010
  • The electronic structures and bonding configuration of histidine on Ge(100) have been investigated with various sample treatments using core-level photoemission spectroscopy (CLPES). Interpretation of the Ge 3d, C 1s, N 1s, and O 1s core level spectra being included in these systems revealed that both the imino nitrogen in the imidazole ring and the carboxyl group in the glycine moiety concurrently participate in the adsorption of histidine on a Ge(100) surface at 380 K. Moreover, we could clearly confirm that the imino nitrogen with a free lone pair in the imidazole group adsorbs on Ge(100) more strongly than the carboxyl group in the glycine moiety by examining systems annealed at various temperatures.

Molecular Bonding Force and Stiffness in Amine-Linked Single-Molecule Junctions Formed with Silver Electrodes

  • Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.132-135
    • /
    • 2015
  • Bonding force and stiffness in amine-linked single-molecule junctions for Ag electrodes were measured using a home-built conducting atomic force microscope under ambient conditions at room temperature. For comparison, Au electrodes were used to measure the rupture force and stiffness of the molecular junctions. The traces of the force along with the conductance showed a characteristic saw-tooth pattern owing to the breaking of the metal atomic contacts or the metal-molecule- metal junctions. We found the rupture force and stiffness for Ag are smaller than those for Au electrodes. Furthermore, we observed that the force required to break the amine-Ag bond in the conjugated molecule, 1,4-benzenediamine, is smaller than in 1,4-butanediamine which is fully saturated. These results consist with the previous theoretical calculations for the binding energies of the nitrogen bonded to Ag or Au atoms.

Evidence for a Common Molecular Basis for Sequence Recognition of N3-Guanine and N3-Adenine DNA Adducts Involving the Covalent Bonding Reaction of (+)-CC-1065

  • Park, Hyun-Ju
    • Archives of Pharmacal Research
    • /
    • v.25 no.1
    • /
    • pp.11-24
    • /
    • 2002
  • The antitumor antibiotic (+)-CC-1065 can alkylate N3 of guanine in certain sequences. A previous high-field $^1H$ NMR study on the$(+)-CC-1065d[GCGCAATTG*CGC]_2$ adduct ($^*$ indicates the drug alkylation site) showed that drag modification on N3 of guanine results in protonation of the cross-strand cytosine [Park, H-J.; Hurley, L. H. J. Am. Chem. Soc.1997, 119,629]. In this contribution we describe a further analysis of the NMR data sets together with restrained molecular dynamics. This study provides not only a solution structure of the (+)-CC-1065(N3- guanine) DNA duplex adduct but also new insight into the molecular basis for the sequence- specific interaction between (+)-CC-1065 and N3-guanine in the DNA duplex. On the basis of NOESY data, we propose that the narrow minor groove at the 7T8T step and conformational kinks at the junctions of 16C17A and 18A19T are both related to DNA bending in the drugDNA adduct. Analysis of the one-dimensional $^1H$ NMR (in $H_2O$) data and rMD trajectories strongly suggests that hydrogen bonding linkages between the 8-OH group of the (+)-CC-1065 A-sub-unit and the 9G10C phosphate via a water molecule are present. All the phenomena observed here in the (+)-CC-1065(N3-guanine) adduct at 5'$-AATTG^*$are reminiscent of those obtained from the studies on the (+)-CC-1065(N3-adenine) adduct at $5'-AGTTA^*$, suggesting that (+)-CC-1065 takes advantage of the conformational flexibility of the 5'-TPu step to entrap the bent structure required for the covalent bonding reaction. This study reveals a common molecular basis for (+)-CC-1065 alkylation at both $5'-TTG^*$ and $5'-TTA^*$, which involves a trapping out of sequence-dependent DNA conformational flexibility as well as sequence-dependent general acid and general base catalysis by duplex DNA.

CHANGES OF THE DEGREE OF CONVERSION AND SHEAR BOND STRENGTH ACCORDING TO THE MONOMER RATIO OF EXPERIMENTAL BONDING RESINS (실험적 접착레진의 단량체 조성비에 따른 중합률 및 전단결합강도 변화에 관한 연구)

  • Moon, Anne-Jay;Kim, Byung-Hyun;Cho, Byeong-Hoon;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.26-39
    • /
    • 1999
  • Bis-GMA, the representative monomer of bonding resin, contributes to the rigidity of bonding layer. Hydrophilic monomer contributes to the permeability into dentin substrates while weaken the bonding layer due to its small molecular weight. The degree of conversion also contributes to the ultimate strength of the bonding layer. This study was performed for the correlation analysis of monomer ratio and dentin bonding strength via degree of conversion. 7 experimental bonding resins were prepared with Bis-GMA, ratio from 20% to 80% by 10% increment, and hydrophilic HEMA monomer. Their degree of conversion and shear bond strength to dentin were compared with Scotchbond Multi-Purpose adhesive, and the fractured surfaces were examined microscopically. The results were as follows; 1. The degree of conversion increased when, the ratio of Bis-GMA increased from 20% to 70%, whereas it decreased when the ratio of Bis-GMA was 80%. 2. Shear bond strengths of the experimental bonding resins of 80%, 70%, 60% ratio of Bis-GMA were significantly higher than those of the experimental bonding resin of 50% ratio of Bis-GMA and Scotchbond Multi-Purpose adhesive. Lower shear bond strengths were obtained with the experimental bonding resins of 40%, 30%, 20% ratio of Bis-GMA (p<0.05). 3. Adhesive fractures were associated with the bonding resins of the lower bond strength, while cohesive fractures within the bonding resin layer were associated with the bonding resins of higher bond strength. Bonding resins with shear bond strength higher than 18MPa showed some cohesive fractures within the composite resin or within the dentin. 4. Correlations between Bis-GMA ratio and the degree of conversion (r=0.826), between Bis-GMA ratio and shear bond strength (r=0.853), and between the degree of conversion and shear bond strength (r=0.786) were significant (p<0.05).

  • PDF

The Importance of Halogen Bonding: A Tutorial

  • Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.195-197
    • /
    • 2012
  • Halogen atoms in a molecule are traditionally considered as electron donors, since they have unshared electrons. Normally when they are bonded, there are three lone pair electrons. These lone pairs can function as Lewis bases. However, when they are bound to electron withdrawing groups, they can act as Lewis acids. Since the situation is similar hydrogen bonding (HB), this type of interaction is named as halogen bonding (XB). This mainly comes from the uneven distribution of electron density around the halogen atoms. Since the electron density around halogen atom opposite to ${\sigma}$-bond is depleted, its electropositive region is called ${\sigma}$-hole. This ${\sigma}$-hole can attract halogen bond acceptors, requiring more stringent directionality compared to HB. Since this interaction mainly comes from electrostatic origin, the geometry tends to be linear. Since the XB energy is comparable to corresponding HB. Still in its infancy, XB shows a broad range of applicability, with potentially more useful properties, compared to corresponding HB.