• Title/Summary/Keyword: molecular analysis

Search Result 7,958, Processing Time 0.038 seconds

Intratumoral distribution of 64Cu-ATSM and 18F-FDG in VX2tumor xenografted rabbit

  • Yoo, Ran Ji;Lee, Ji Woong;Lee, Kyo Chul;An, Gwang Il;Ko, In Ok;Chung, Wee Sup;Park, Ji Ae;Kim, Kyeong Min;Choi, Yang-Kyu;Kang, Joo Hyun;Lim, Sang Moo;Lee, Yong Jin
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.123-129
    • /
    • 2015
  • $^{64}Cu$-labeled diacetyl-bis($N^4$-methylthiosemicarbazone) is a promising agent for internal radiation therapy and imaging of hypoxic tissues. In the study, we confirmed hypoxia regions in VX2 tumor implanted rabbits with injection $^{64}Cu$-ATSM and $^{18}F$-FDG using positron emission tomography (PET)/computed tomography (CT). PET images with $^{18}F$-FDG and $^{64}Cu$-ATSM were obtained for 40 min by dynamic scan and additional delayed PET images of $^{64}Cu$-ATSM the acquired up to 48 hours. Correlation between intratumoral $O_2$ level and $^{64}Cu$-ATSM PET image was analyzed. $^{64}Cu$-ATSM and $^{18}F$-FDG were intravenously co-injected and the tumor was dissected and cut into slices for a dual-tracer autoradiographic analysis. In the PET imaging, $^{64}Cu$-ATSM in VX2 tumors displayed a specific uptake in hypoxic region for48 h. The uptake pattern of $^{64}Cu$-ATSM in VX2 tumor at 24 and 48 h did not match to the $^{18}F$-FDG. Through ROI analysis, in the early phase (dynamic scan), $^{18}F$-FDG has positive correlation with $^{64}Cu$-ATSM but late phase (24 and 48 h) of the $^{64}Cu$-ATSM showed negative correlation with $^{18}F$-FDG. High uptake of $^{64}Cu$-ATSM in hypoxic region was responded with significant decrease of oxygen pressure, which confirmed by $^{64}Cu$-ATSM PET imaging and autoradiographic analysis. In conclusion, $^{64}Cu$-ATSM can utilize for specific targeting of hypoxic region in tumor, and discrimination between necrotic- and viable hypoxic tissue.

Detection of the BCR/abl Gene Rearrangement by Reverse Transcriptase Based Polymerase Chain Reaction

  • Lee, Kyung-Ok;Park, Young-Suk;Kim, Yong-Woo;Han, Jung-A;Kim, Yoon-Jung
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.241-247
    • /
    • 1996
  • The Philadelphia (Ph) chromosome is the single most intensively studied chromosome alteration characterizing a human malignancy. The specific genetic alteration of chronic myelogenous leukemia (CML) is the formation of the BCR/abl fusion gene in leukemic cells. The presence of the BCR/abl gene has important diagnostic and prognostic implications in CML. The detection of BCR/abl transcripts by reverse transcriptase based polymerase chain reaction (RT-PCR) was investigated in patients with CML in whom the Ph chromosome abnormality was documented by cytogenetic analysis. In a total of 68 CML patient cases, the Ph chromosome was found in 53 cases (77.9%) by cytogenetic analysis. On the other hand, sixty two cases (91.2%) were detected to have BCR/abl gene rearrangement Of these, b3a2 was 44 cases (64.7%) and b2a2 was 17 cases (25,0%). There was one case with both b3a2 and b2a2 (1.5%). Of the fifteen cases of Ph chromosome negative by cytogenetic anlaysis, the BCR/abl gene was observed in nine cases, The results of BCR/abl fusion gene confirmed by the direct sequencing method correlated well with PCR analysis, The amplified PCR products were detected by $1{\times}10^{-5}$ dilutions. In conclusion, PCR technique is sensitive, rapid and relatively simple for a laboratory test in detecting the BCR/abl fusion gene with CML regardless of the result of cytogenetic analysis.

  • PDF

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF)- Based Cloning of Enolase, ENO1, from Cryphonectria parasitica

  • Kim, Myoung-Ju;Chung, Hea-Jong;Park, Seung-Moon;Park, Sung-Goo;Chung, Dae-Kyun;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.620-627
    • /
    • 2004
  • On the foundation of a database of genome sequences and protein analyses, the ability to clone a gene based on a peptide analysis is becoming more feasible and effective for identifying a specific gene and its protein product of interest. As such, the current study conducted a protein analysis using 2-D PAGE followed by MALDI- TOF and ESI-MS to identify a highly expressed gene product of C. parasitica. A distinctive and highly expressed protein spot with a molecular size of 47.2 kDa was randomly selected and MALDI-TOF MS analysis was conducted. A homology search indicated that the protein appeared to be a fungal enolase (enol). Meanwhile, multiple alignments of fungal enolases revealed a conserved amino acid sequence, from which degenerated primers were designed. A screening of the genomic $\lambda$ library of C. parasitica, using the PCR amplicon as a probe, was conducted to obtain the full-length gene, while RT-PCR was performed for the cDNA. The E. coli-expressed eno 1 exhibited enolase enzymatic activity, indicating that the cloned gene encoded the C. parasitica enolase. Moreover, ESI-MS of two of the separated peptides resolved from the protein spot on 2-D PAGE revealed sequences identical to the deduced sequences, suggesting that the cloned gene indeed encoded the resolved protein spot. Northern blot analysis indicated a consistent accumulation of an eno1 transcript during the cultivation.

Identification of Proteins Responsible for the Development of Adriamycin Resistance in Human Gastric Cancer Cells Using Comparative Proteomics Analysis

  • Yang, Yi-Xuan;Hu, Huai-Dong;Zhang, Da-Zhi;Ren, Hong
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.853-860
    • /
    • 2007
  • Resistance to anticancer drugs is a major obstacle in the effective treatment of tumors. To understand the mechanisms responsible for multidrug resistance (MDR), a proteomic approach was used to identify proteins that were expressed in different levels by the adriamycinresistant human gastric cancer cell line, SGC7901/ADR, and its parental cell line, SGC7901. Two-dimensional gel electrophoresis (2-DE) and image analysis was used to determine which protein spots were expressed in different levels by the two cell lines. These spots were then partially identified using ESI-Q-TOF mass spectrometry, and the differential expressional levels of the partially identified proteins were then determined by western blot analysis and real-time RT-PCR. Additionally, the association of Nucleophosmin (NPM1), a protein that was highly expressed by SGC7901/ADR, with MDR was analyzed using siRNA. As a result of this study, well-resolved, reproducible 2-DE patterns of SGC7901/ADR and SGC7901 were established, and 16 proteins that may playa role in the development of thermo resistance were identified. Additionally, suppression of NPMl expression was found to enhance adriamycin chemosensitivity in SGC7901/ADR. These results provide a fundamental basis for the elucidation of the molecular mechanism of MDR, which may assist in the treatment of gastric cancer.

Identification of Hepatotoxicity Related Genes Induced by Hexachlorobenzne (HCB) in Human Hepatocellular Carcinoma (HepG2) Cells

  • Kim, Youn-Jung;Choi, Han-Saem;Song, Mee;Song, Mi-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 2009
  • Hexachlorobenzene (HCB) is a bioaccumulative, persistent, and toxic pollutant. HCB is one of the 12 priority of Persistent Organic Pollutants (POPs) intended for global action by the United Nations Environment Program (UNEP) Governing Council. POPs are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes. Some of HCB is ubiquitous in air, water, soil, and biological matrices, as well as in major environmental compartments. HCB has effects on various organs such as thyroid, bone, skin, kidneys and blood cells and especially, revealed strong toxicity to liver. In this study, we identified genes related to hepatotoxiciy induced by HCB in human hepatocellular carcinoma (HepG2) cells using microarray and gene ontology (GO) analysis. Through microarray analysis, we identified 96 up- and 617 down-regulated genes changed by more than 1.5-fold by HCB. And after GO analysis, we determined several key pathways which known as related to hepatotoxicity such as metabolism of xenobiotics by cytochrome P450, complement and coagulation cascades, and tight junction. Thus, our present study suggests that genes expressed by HCB may provide a clue for hepatotoxic mechanism of HCB and gene expression profiling by toxicogenomic analysis also affords promising opportunities to reveal potential new mechanistic markers of toxicity.

Wettability and Aging Effect of Polystyrene Film Treated by PSII according to the Molecular Weight (플라즈마 이온주입 방법으로 처리된 폴리스티렌의 분자량에 따른 표면 친수성 및 에이징 현상)

  • Kim, Youngsoo;Lim, Hyuneui;Han, Seunghee;Lee, Yeonhee;Kim, Youngsang
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.229-235
    • /
    • 2002
  • Plasma source ion implantation (PSII) technique was utilized to improve the wettability of polystyrene surfaces. It is well known that treated surfaces undergo aging, leading to hydrophobic recovery with time. We investigated the aging effect of polystyrene thin film on the various molecular weights. Polystyrenes with several molecular weights ($M_w$ = 760, 2430, 31600, 115700, 280000, 903600) were treated in different experimental conditions including gas species and pulse energy, and their hydrophilicity was measured by contact angle goniometer. To study wettability decay as a function of the molecular weight, PSII-treated samples were aged at different temperatures. Hydrophobic recovery of high molecular weight polystyrene was much slower than that of low molecular weight, even at high temperatures. The methods used to characterize treated surfaces were water contact angle measurement, TOF-SIMS, XPS, SEM and AFM.

Molecular Authentication of Acanthopanacis Cortex by Multiplex-PCR Analysis Tools

  • Kim, Min-Kyeoung;Jang, Gyu-Hwan;Yang, Deok-Chun;Lee, Sanghun;Lee, Hee-Nyeong;Jin, Chi-Gyu
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.680-686
    • /
    • 2014
  • Acanthopanacis Cortex has been used for oriental medicinal purposes in Asian countries especially in Korea and China. In the Korean Pharmacopeia, the cortexes of the dried roots, stems and branches of all species in Eleutherococcus and Eleutherococcus sessiliflorus are known as 'Ogapi'. Mostly the cortexes of E. gracilistylus roots and E.senticosus roots were used as 'Ogapi' in China and Japan, respectively. Therefore, the purpose of this study was to determine and compare the molecular authentication of Korean 'Ogapi' by using the ribosomal internal transcribed spacer (ITS) region. The ITS region has the highest possibility of effective and successful identification for the widest variety of molecular authentication. The ITS region was targeted for molecular analysis with Single nucleotide polymorphisms (SNPs) specific for morphologically similar to E. gracilistylus, E. senticosus, E. sessiliflorus from their adulterant, moreover, E. sieboldianus were detected within sequence data. Thus, based on these SNP sites, specific primers were designed and multiplex PCR analysis were conducted for molecular authentication of four plants (E. gracilistylus, E. senticosus, E. sessiliflorus, and E. sieboldianus). The findings of results indicated that ITS region might be established multiplex-PCR analysis systems and hence were proved to be an effective tools for molecular evaluation and comparison of 'Ogapi' with other plants.

CDRgator: An Integrative Navigator of Cancer Drug Resistance Gene Signatures

  • Jang, Su-Kyeong;Yoon, Byung-Ha;Kang, Seung Min;Yoon, Yeo-Gha;Kim, Seon-Young;Kim, Wankyu
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2019
  • Understanding the mechanisms of cancer drug resistance is a critical challenge in cancer therapy. For many cancer drugs, various resistance mechanisms have been identified such as target alteration, alternative signaling pathways, epithelial-mesenchymal transition, and epigenetic modulation. Resistance may arise via multiple mechanisms even for a single drug, making it necessary to investigate multiple independent models for comprehensive understanding and therapeutic application. In particular, we hypothesize that different resistance processes result in distinct gene expression changes. Here, we present a web-based database, CDRgator (Cancer Drug Resistance navigator) for comparative analysis of gene expression signatures of cancer drug resistance. Resistance signatures were extracted from two different types of datasets. First, resistance signatures were extracted from transcriptomic profiles of cancer cells or patient samples and their resistance-induced counterparts for >30 cancer drugs. Second, drug resistance group signatures were also extracted from two large-scale drug sensitivity datasets representing ~1,000 cancer cell lines. All the datasets are available for download, and are conveniently accessible based on drug class and cancer type, along with analytic features such as clustering analysis, multidimensional scaling, and pathway analysis. CDRgator allows meta-analysis of independent resistance models for more comprehensive understanding of drug-resistance mechanisms that is difficult to accomplish with individual datasets alone (database URL: http://cdrgator.ewha.ac.kr).