• Title/Summary/Keyword: molds

Search Result 1,067, Processing Time 0.023 seconds

Rapid Tooling by Using Metal Powder Reinforced Resin (금속분말 강화수지를 이용한 쾌속금형 제작)

  • Kim, Beom-Su;Jeong, Hae-Do;Bae, Won-Byeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.1-6
    • /
    • 2000
  • As dies and molds have become more and more complicated in the recent years, the demand for lower cost and shorter production time is also growing stronger. Rapid prototyping and Tooling technologies are expected to be used for more rapid and lower cost tool fabrication. However the rapid tooling methods have not yet reached the level of application to the manufacturing of metallic dies and molds which require high dimensional accuracy. As the rapid tooling technology, there are the slurry casting, the powder casting, the direct laser sintering, and so on. Generally, in the slurry casting, the alumina powder and the water soluble phenol were mainly used. However, the mechanical properties of the phenol were not good enough to apply to molds directly. In this study, pure epoxy and two types of aluminium powder reinforced resin are applied to the slurry casting. The mechanical and thermal properties are better than phenol because the epoxy is the thermosetting resin. And mechanical characteristics such as shrinkage rate, hardness, surface roughness are measured for the sake of comparison. Metal powder reinforced resin molds are better than the resin tool form the viewpoint of shrinkage rate and hardness. Finally, it has been shown that the application possibility of this process is high, because the manufacturing time and cost savings are significant.

Antimicrobial Characteristics Against Spoilage Microorganisms and Food Preservative Effect of Cinnamon (Cinnamomum cassia Blume) Bark Extract (계피추출물의 부패미생물에 대한 항균특성과 식품보존효과)

  • 정은탁;박미연;이은우;박욱연;장동석
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.648-653
    • /
    • 1998
  • The development of natural food preservatives instead of chemical synthetic food preservatives is world wide inte-rest. Authors already investigated that cinnamon bark extract revealed antimicrobial activity against general spoilage microorganisms of food especially its acitivity was stronger against molds than against bacteria. In this paper, authors examined the mirobial flora from the spoiled fish meat paste products and also checked the possibility of cinnamon bark extract food preservative for prolong the shelf life of the fish paste product and breads. The predominat bacteria was Bacillus sp. as about 98% of the total microorganisms isolated from unpacked or packed spoiled fish meat paste products. While molds and yeast are not detected from the vacuum packed products. The MIC(minimum inhibitory concentration) of cinnamon bark extract against the isolated spoilage bacteria and molds was 160~640$\mu\textrm{g}$/$m\ell$ and 40~80$\mu\textrm{g}$/$m\ell$, respectively. When the diluted cinnamon bark extract (the extract : ethanol=1 : 3) was sprayed on the surface of fried fish meat paste product, molds growth was delayed by 2 days at room temperature. The shelf lifes of sandwich and glutinousrice bread which surface sprayed with the diluted extract(1 : 1) was extended by 5 and 7 days, respectively.

  • PDF

Extrusion Die Development of Interior & Exterior Parts for High Speed Train on Aluminum Alloys and Controls of Extrusion Conditions (고속전철 내·외장재용 알루미늄 합금의 압출 금형 개발 및 압출 조건의 제어)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.50-55
    • /
    • 2018
  • The important thing in extrusion technology is the design and production of molds. Appropriate design of the molds is essential for achieving the desired extrusion of molds at the same time to maximize the life of the molds and increase their efficiency. The extrusion temperature and extrusion speed are the main parameters at the time of extrusion. Different extrusion conditions should be added depending on the extrusion ratio, physical properties of the material, and type of extrusion. In this study, the extrusion process of various 6xxx series aluminum cast alloys for high speed train interior or exterior parts were investigated. The extruded die design was performed for the 6063, 6061, 6N01, 6005, 5083 and 6060 alloy profiles and an extrusion test was conducted. In addition, the extrusion conditions, such as extrusion pressure following as the billet temperature, extrusion temperature, and materials change, were analyzed. Although the 6063 aluminum alloy can be extruded at the lowest temperature and pressure, the 6061 alloy can be extruded at the highest temperature and pressure. From these results, the successful extruded products were manufactured from these established conditions.

Development of Prototyping and Die/Mold Manufacturing Technology using Rapid Prototyping(SLA) (쾌속 3차원 조형법을 이용한 시작기술 및 시작금형)

  • Park, K.;Lee, S.C.;Jung, J.H.;Yang, D.Y.;Yoon, J.R.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1582-1589
    • /
    • 1996
  • Rapid prototyping is a new prototyping technology which produces three dimensional part models directrly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Appaaratus(SLA) which is the most widely-used rapid prototyping system is introduced to achieve die/mold technology innovation. For the purpose, the prototyping technology using SLA is developed such that patterns of which shapes are quite complicated are successfully produced with high accuracy. Using these patterns, prototype die/molds are efficientrly manufactured; a turbocharger rotor, a fan and a wheel patterns, prototype die/molds are efficienterly manufactured ; a turbochager rotor, a fan and a wheel pattern are made, and the molds of the investment casting, the injection molding and the die casting are manufactured respectively. The casting products are produced using these molds and it turns out that these methods are quitre effective for manufacturing products of complicated geometry from the viewpoint of efficiency and productivity.

Effect of Sintering condition on Mechanical Properties of Zircon Shell Molds (소결조건이 지르콘 쉘 몰드의 기계적 특성에 미치는 영향)

  • Kim, Jae-Won;Kim, Du-Hyeon;Seo, Seong-Mun;Jo, Chang-Yong;Choe, Seung-Ju
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.865-871
    • /
    • 1999
  • Effect of sintering condition in mechanical properties of ZrSiO\ulcorner shell molds was investigated. Number of microcrack in primary layer of the mold was maximized after preheating at $1000^{\circ}C$ for 1.5 hours. Yield strength and specific surface area of the mold were inversely proportion to sintering temperature and time. After hot deformation test at $1500^{\circ}C$ for 4 hours, molds were deformed opposite to the loading direction and backup layers were cracked along the interface between stucco and zircon slurry. Reverse deformation of the molds during hot deformation test was considered to be resulted from the difference of thermal expansion coefficient between alumina stucco and zircon slurry in primary coat, and size difference between zircon stucco and zircon slurry in backup coat.

  • PDF

Cellular Slime Molds in Forest Soils of Central Areas of Korea (중남부 삼림 지역에서의 세포성 점균의 출현과 분포)

  • 박미아;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.3
    • /
    • pp.213-230
    • /
    • 1996
  • A study of occurrence and distribution of cellular slime molds(CSMs) in forest soils of central areas of Korea was carried out. Samples for CSMs isolation were collected from 4 study sites; Mt.Kyeryong, Mt. Taebaek, Mt. Sobaek and Mt. Sokri. In Mt. Kyeryong, six species were found. These were Dictyostelium fasciculatum, D.firmibasis, D. mucoroides, D. minutum, D. brefeldianum and Polysphondylium pallidum. The average number of species isolated at one site was 0.75, and average density(clones /g soil) was 292. The results of soil sample analyses were that the concentration of Pb was higher than any other areas. In Mt. Taebaek, seven species were found; D. fasciculatum, D.firmibasis, D. mucoroides, D. miuutum, P.pallidum. P. violaceum, P. candidum. The average number of species isolated at one site was 2.3,and average density was 1,108. Based on importance values calculated from study sites within each of three elevation ranges, several of the more widely distributed and abundant species have distribution patterns that show a response to elevation. In Mt. Sobaek, eleven species were found. These were D. fasciculatum. D.firmibasis, D. mucoroides, D. miuutum, D. brefeldianum, D. crassicaule,D. deminutivum, D. implicatum, P. pallidum. P. violaceum and P. candidum. The average number of species isolated at one site was 3, and average density was 793. Species diversity appeared to be the highest in this area. In Mt. Sokri, six species were found. These were D. fasciculatum. D. mucoroides, D. minutum, D. purpureum, P. pallidum. and P. violaceum. The average number of species isolated at one site was 2.4 and average density was 858. It was noticeable that D.purpureum were much more comrnonly found in this pinus evergreen forest. Key words: Cellular slime molds(CSMs), Importance value, Elevation, Average number of species, Average density.

  • PDF

Aflatoxin: Factors Affecting Aflatoxin Production (Aflatoxin과 그 생성(生成)에 관련되는 주요인(主要因))

  • Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.1
    • /
    • pp.117-126
    • /
    • 1984
  • Aflatoxins are toxic and carcinogenic secondary metabolites which are produced by trains of A. flavus and A. parasiticus during their growth on foods and feedstuffs. Aflatoxins are a group of closely related heterocyclic compounds of which $B_1$, $B_2$, and $G_2$ are the major members. Aflatoxins are synthesized via a polyketide pathway in which the general steps are acetate, an-thraquinones, xanthone and aflatoxins. Aflatoxin formation is favored by high moisture or high $a_w$(0.95${\sim}$0.99). The limiting $a_w$ for aflatoxin production on agricultural commodities is 0.83. Optimum temperature for aflatoxin production by the molds is $25{\sim}30^{\circ}C$ and the incubation time for the maximum production of the toxin is 7${\sim}$15 days. The limiting temperatures for aflatoxin production are ${\leq}7.5^{\circ}C\;and\;\geq40^{\circ}C$. Cycling temperatures may or may not stimulate aflatoxin production depending on the amplitude of cycling, substrate and strains of molds. Aflatoxin pro-ducing molds are aerobic organisms and thus have a requirement for oxygen. A decreasing $O_2$ concentration and/or increasing concentrations of $CO_2$ or $N_2$ depress the mold growth and aflatoxin formation. A. flavus grows competitively or associatively in the presence of other microorganisms and occasionally loses the competition with other microorganisms. Some lactic acid bacteria have been shown to reduce growth and aflatoxin production by A. parasiticus. Carbon source is the most important nutritional factors affecting aflatoxin formation by the molds. Sucrose, fructose and glucose are the most favorable carbon sources. Food substrates of plant derived products which have high carbohydrate content such as agricultural commodities and their products are most vulnerable to contamination by aflatoxins.

  • PDF

An Experimental Study on the Performance of Bond-Type Anchorage Systems with Various Dimensions of Steel Mold (CFRP 긴장재용 부착형 정착 장치의 강관 몰드 제원에 따른 정착 성능 실험 연구)

  • Jung, Woo-Tai;Park, Young-Hwan;Park, Jong-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • This paper contains the experimental performance evaluation results of bond-type anchorage systems with the CFRP(carbon fiber reinforced polymer) tendon. The preliminary tests were performed to find the appropriate filling materials in the steel molds. A total of five materials including epoxy or cement mortar have been used as fillers in the steel molds. Results of the preliminary tests showed that specimen filled with non-shrinkage mortar showed maximum tensile strength. Based on the finding, the non-shrinkage mortar was selected as filler for anchoring CFRP tendons. Additional tests were performed as a parametric study to select proper size of steel molds such as external diameter, thickness, and length. The proper size of steel molds with non-shrinkage mortar was selected based on the test results, which gave stable tensile performance.

A study on the characterization of shear surface according to shear rate and shear mechanism in high temperature shear process of boron steel (보론강 고온전단공정에서 전단속도 및 메커니즘에 따른 전단면 특성 파악에 관한 연구)

  • Jeon, Yong-Jun;Choi, Hyun-Seok;Lee, Hwan-Ju;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.37-41
    • /
    • 2017
  • With light vehicle weight gradually becoming ever more importance due to tightened exhaust gas regulations, hot-stamping processing using boron alloyed steel is being applied more and more by major automobile OEMs since process assures both moldability and a high strength of 1.5 GPa. Although laser trimming is generally applied to the post-processing of the hot-stamped process with high strength, there have been many studies of in-die hot trimming using shear dies during the quenching of material in order to shorten processing times. As such, this study investigated the effects of the Shear rate and Shear mechanism on shear processes during the quenching process of hot-stamping material. In case of pad variable, padding force is very weak compared with shear force, so it does not affect the shear surface. In case of shear rate, the higher the shear at high temperatures and the higher the friction effect. As a result the rollover and the fracture distribution decreased, and the burnish distribution increased. Therefore, it is considered that the shear quality is guaranteed when high shear rate is applied in high temperature shear process.

Fabrication of Functionally Graded Materials Between P21 Tool Steel and Cu by Using Laser-Aided Layered Manufacturing (레이저 적층조형을 이용한 P21 툴 스틸과 Cu 간 기능성 경사 복합재의 제작)

  • Jeong, Jong-Seol;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.61-66
    • /
    • 2013
  • With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one-dimensional P21-Cu FGMs were fabricated by using laser-aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.