• Title/Summary/Keyword: molding Method of Model

Search Result 104, Processing Time 0.025 seconds

A study on searching method of molding condition to control the thickness reduction of optical lens in plastic injection molding process (플라스틱 광학렌즈 사출성형에 있어서 수축 변형량 예측을 위한 사출성형 조건 탐색에 관한 연구)

  • 곽태수;오오모리히토시;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2004
  • In the injection molding of plastic optical lenses, the molding conditions have critical effects on the quality of the molded lenses. Since there are many molding parameters involved in injection molding process, determination of the molding conditions for lens molding is very important in order to precisely control the surface contours of an optical lens. Therefore this paper presents the application of neural network in suggesting the optimized molding conditions for improving the quality of molded parts based on data of FE Analysis carried out through CAE software, Timon-3D. Suggested model in this paper, which serves to learn from the data of FE Analysis and induce the values for optimized molding conditions. has been implemented for searching the molding conditions without void and with minimized thickness shrinkage at lens center of injection molding optical lens. As the result of this study. we have confirmed that void creation at the inside of lens is primarily determined by mold temperature and thickness shrinkage at center of lens is primarily determined by the parameters such as holding pressure and mold temperature.

Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

  • Qu, Xiaozhang;Liu, Guiping;Duan, Shuyong;Yang, Jichu
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-190
    • /
    • 2016
  • A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

Establishment of Standard Model for Production Facility Informatization System for Molding Business and its Effect Analysis (성형제조업의 생산설비정보화 시스템 표준모델 구축 및 효과 분석)

  • Yoon, Kyung-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.171-178
    • /
    • 2010
  • The purpose of this research is to develop a standard model for the compilation of production results in molding business to establish the informatization system for the production facility among informatizadon projects which can generate the performance of medium and short term introduction of the project in implementing the system to small and medium industry. The theory on the development method for the standardization of informatization for production facility in molding business applies PSDM (Production System Development Method) for which a number of researches were already done while developing a standardization model by standardizing two processes of raw material demand/supply management and making sum total for production quantity which are main processes for production management process. On the basis of the result of this research, small and medium companies in molding business and relevant specialized IT companies which desire to establish production facility informatization systems will be able to establish more efficient system by applying standardized model, and the result of research will enable to facilitate the establishment of the system for them while providing reliability of the system. Through the application of the result of this research, it will be possible to accomplish the elimination of unreasonable factors in production process, the enhancement of product quality and the saving of production cost.

A Study on Improvement of Accuracy using Geometry Information in Reverse Engineering of Injection Molding Parts (사출성형품의 역공학예서 Geometry정보를 이용한 정밀도 향상에 관한 연구)

  • 김연술;이희관;황금종;공영식;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.546-550
    • /
    • 2002
  • This paper proposes an error compensation method that improves accuracy with geometry information of injection molding parts. Geometric information can give an improved accuracy in reverse engineering. Measuring data can not lead to get accurate geometric model, including errors of physical parts and measuring machines. Measuring data include errors which can be classified into two types. One is molding error in product, the other is measuring error. Measuring error includes optical error of laser scanner, deformation by probe forces of CMM and machine error. It is important to compensate these in reverse engineering. Least square method(LSM) provides the cloud data with a geometry compensation, improving accuracy of geometry. Also, the functional shape of a part and design concept can be reconstructed by error compensation using geometry information.

  • PDF

AN ANALYSIS OF MOLDING AND CURING OF SMC BY THE FINITE ELEMENT METHOD

  • Kim, Naksoo-
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.177-200
    • /
    • 1992
  • A thermo-viscoplastic finite element program was developed to analyze the compression molding of SMC process. Deformation of the material was modelled by using the flow-rule. Heat balance during the process was coupled to the deformation. In the cure study, a kinetic model was adopted to describe the cure behavior. The numerical kinetic model was integrated with the thermo-viscoplastic numerical analysis by adding heat generation due to the chemical reaction of the workpiece in the heat transfer analysis. The integrated finite element program can simulate a whole sequential molding process including deformation, heat transfer, and chemical reaction. A practical SMC molding process with T-shaped substructure was simulated. The simulated results showed good agreements with experiments.

  • PDF

Flow and Cure Simulation of resin transfer molding process for composites using MoldFlow (복합재료 수지 전달 공정의 몰드플로우를 이용한 유동과 경화 시뮬레이션)

  • Jung, Jae-Sung;Hong, Ji-Seon;Kim, Sun-Kyoung
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.44-49
    • /
    • 2022
  • In this study, the simulation of the resin transfer molding process method using MoldFlow has been investigated. This work explains the thermoset material model, fabric permeability model, the flow model and the cure model. It has been shown that the simulation result can predict filling and cure performances.

Optimization of Vacuum Cleaner Handle Using Approximate Model and NSGA-II (근사 모델과 NSGA-II를 이용한 진공청소기 손잡이 근사최적설계)

  • Yun, Minro;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • The major parts of a vacuum cleaner are molded. The vacuum cleaner works in multi-load conditions. Therefore, the designer needs to optimize the structure and injection molding conditions simultaneously. Here, the main factor of design is the rib shape and thickness. The greater the rib thickness, the greater the stiffness of the structure. However, it causes an increase in weight. On the other hand, the lower the rib thickness, the greater the increase in the injection pressure. However, the weight will be reduced. Therefore, the designer needs to optimize the rib shape and thickness for structure stiffness and injection molding. In order to solve this problem, we propose an optimization method using D.O.E and a response surface model, which is a multi-objective optimization method using the multi-objective genetic algorithm.

Influence of Injection Molding Conditions on the Birefringence of Disks (사출성형 조건이 디스크의 복굴절에 미치는 영향)

  • Lee, Ho-Sang;Park, Min-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.28-33
    • /
    • 2010
  • A computer code was developed to simulate all three stages of the injection molding process: filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Based on the simulation, the Taguchi method was used to investigate the influences of injection molding conditions on the birefringence of a center gate disk. In addition, the optimal processing conditions were selected to minimize the birefringence and the birefringence difference along the positions of the disk.

Influences of Injection Molding Conditions on the Birefringence of a Disk (사출성형 조건이 디스크의 복굴절에 미치는 영향)

  • Park M.G.;Lee D.H.;Lee H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.305-309
    • /
    • 2005
  • A computer code was developed to simulate all three stages of the injection molding process ? filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Based on the simulation, the Taguchi method was used to investigate the influences of injection molding conditions on the birefringence of a center gate disk. In addition, the optimal processing conditions were selected to minimize the birefringence and the birefringence difference along the positions of the disk.

  • PDF

A study on light weighted injection molding technology and warpage reduction for lightweight automotive head lamp parts (자동차 헤드램프 부품의 경량화 사출 성형기술 및 변형 저감에 관한 연구)

  • Jeong, Eui-Chul;Son, Jung-Eon;Min, Sung-Ki;Kim, Jong-Heon;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, micro cellular injection molding of automobile head lamp housing with uneven thickness structure was performed to obtain improvement on deformation and light-weight of the part. The thickness of the presented model was uniformly modified to control the deformation of the molded part. In order to maximize the lightweight ratio, the model having an average thickness of 2.0 mm were thinly molded to an average thickness of 1.6 mm. GFM(Gas Free Molding) and CBM(Core Back Molding) technology were applied to improve the problems of the conventional foam molding method. Equal Heat & Cool system was also applied by 3D cooling core and individual flow control system. Warpage of the molded parts with even cooling was minimized. To improve the mechanical properties of foamed products, complex resin containing nano-filler was used and variation of mechanical properties was evaluated. It was shown that the weight reduction ratio of products with light-weighted injection molding was 8.9 % and the deformation of the products was improved from the maximum of 3.6 mm to 2.0 mm by applying Equal Heat & Cool mold cooling system. Also the mechanical strength reduction of foamed product was less than 12% at maximum.