• 제목/요약/키워드: molding Analysis

검색결과 886건 처리시간 0.033초

Micro EDM을 이용한 Lab-on-a-chip금형의 미세 패턴 제작에 관한 연구 (A Study on the Micro Pattern Fabrication of Lab-on-a-chip Mold Master using Micro EDM)

  • 신봉철;김규복;조명우;김보현;정우철;허영무
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.17-22
    • /
    • 2011
  • Recently, analyzing system is studying for applying to biomedical engineering field, actively. Micro fluidics control system has been manufactured using LIGA (Lithographie Galvanoformung und Abformung), Etching, Lithography and Laser etc. However, it is difficult that above-mentioned methods are applied to fabrication of precision mold master efficiently because of long processing time and rising cost of equipments. Therefore, in this study, micro EDM and micro WEDG system were developed to analyze machining characteristics with tool wear, surface roughness and process time. Then, optimal machining conditions could be obtained from the results of analysis. As the results, mold master of staggered herringbone mixer which has a high mixing efficiency, one of passive mixer of Lab-on-a-chip, could be fabricated from micro pattern(< 50um) using micro EDM successfully.

초전도 전력용 재료 (Highly functional materials for Electric power)

  • 이상헌;구경완
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.2152-2153
    • /
    • 2011
  • According to a sharp increase in demand for electricity supply secure, and $CO_2$ regulation in accordance with global environmental problems and to solve problems, etc. These factor less pollution, higher energy conversion hyoyulin way that the new electrical equipment, nano-composites The rapid degeneration of the unit study utilizing the power that is required is Free. Accordingly, cables, transformers and switchgear (GIS)-capacity of power equipment, such as, high-voltage high-density along with the miniaturization of equipment have made angry the reliability of these devices is becoming a very important issue. Insulation materials used in electrical equipment for high voltage withstand, power equipment, power equipment due to aging and overloading caused by a weakening of the insulation failure and replacement in accordance with the age due to increased costs because of the reliability of electrical equipment should be secured should. Therefore, improved performance and longevity of insulation material is recognized as an important challenge. In this study, power isolation and degeneration of the unit for use in various parts of the molding epoxy resin to improve the insulation performance of the epoxy resin by varying the added amount of nano-SiO2 nanocomposites made epoxy/SiO2 analysis and breakdown properties of the experiment want to improve the electrical properties through the geometry.

  • PDF

25.8kV $SF_6$가스절연 스위치기어(GIS)를 대체한 친환경 고체절연 스위치기어(SIS) 개발 (Development of the replaced Eco-friendly SIS with GIS for 25.8kV class)

  • 마지훈;정맹뢰;유련;원성연;이석원;김영근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1219_1220
    • /
    • 2009
  • In recent years, the companies of electric power equipment for MV, HV class trend to develop that the eco-friendly insulated(solid, eco-gas, air etc.) switchgear replace with existent SF6 gas insulated switchgear by environmental problems such as global warming and soon. This paper introduces the Solid Insulated Switchgear(SIS) which is the epoxy of eco-friendly insulation material. The characteristic of SIS to introduce in this paper is as following. 1) Eco-friendly. (SF6 gas free) 2) The structure of flexible system. (Expansion) 3) The optimum design. (The Analysis of electrical & mechanical) 4) An Interface treatment between epoxy and insert. (Molding technology) This paper described about some technology for development of SIS.

  • PDF

보류, 탈수, 지합을 종합적으로 고려한 Retention and Drainage Analyzer (RDA) 활용 보류향상제의 선정사례 (An Instance of Selecting Retention Chemicals Based on Simultaneous Analysis of Retention, Drainage and Formation of RDA (Retention and Drainage Analyzer) Sheets)

  • 전창훈;류정용;송봉근;서영범;정성현
    • 펄프종이기술
    • /
    • 제42권3호
    • /
    • pp.7-13
    • /
    • 2010
  • KOptimization and control of wet-end process provide a key solution to improve paper quality and production efficiency at the same time. Wet-end of paper machine is to determine three important influencing factors of papermaking i.e., retention, drainage and formation. Good formation of paper could be made at the cost of deteriorated retention or drainage. In the same manner increase of retention aid could cause the bad formation of paper. It is very important to find a proper retention chemical which may satisfy one of three factors without the sacrifice of other two. Laboratory scale analyzing or screening chemical additives of wet-end was reported in this study based on RDA sheet molding. Different from the conventional test method, simultaneous consideration of three important wet-end properties could be made by RDA and consequently more reliable prediction of actual paper machine wet-end could be expected.

TiO2, Carbonblack 및 POE로 보강된 열가소성 PETG 복합재료의 특성 (Characterization of PETG Thermoplastic Composites Enhanced TiO2, Carbon Black, and POE)

  • 유성훈;이종혁;심지현
    • 한국염색가공학회지
    • /
    • 제31권4호
    • /
    • pp.354-362
    • /
    • 2019
  • In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability and mechanical properties of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out using various additives such as TiO2, carbon black, polyolefin elastomer, and PETG amorphous resin. The thermal and mechanical properties of the thermoplastic composites, and the Charpy impact strength. The analysis was performed to evaluate the characteristics according to the types of additives. DSC and DMA analyzes were performed for thermal properties, and tensile strength, flexural strength, and tensile strength change rate were measured using a universal testing machine to evaluate mechanical properties. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • 제3권1호
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

단섬유강화 복합재료에서 사출측/금형측 노즐 크기 변화에 따른 섬유손상 및 기계적 성질 (The Fiber Damage and Mechanical Properties of Short-fiber Reinforced Composite Depending on Nozzle Size Variations in Injection/Mold Sides)

  • 이인섭;이동주
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.564-573
    • /
    • 2001
  • The mechanical properties of short carbon/glass fiber reinforced polypropylene are experimentally measured as functions of fiber content and nozzle diameter. Also, these properties are compared with the survival rate of reinforced fibers and fiber volume fraction using image analysis after pyrolytic decomposition. The survival rate of fiber aspect ratio as well as fiber volume fraction is influenced by injection processing condition, the used materials and mold conditions such as diameter of nozzle, etc. In this study, the survival rate of fiber aspect ratio is investigated by nozzle size variations in injection/mold sides. It is found that the survival rate of glass fiber is higher that the survival rate of glass fiber is higher than that of carbon fiber. Both tensile modulus and strength of short-fiber reinforced polypropylene are improved s the fiber volume fraction and nozzle diameter are increased.

Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly

  • Li, Ying;Kikuchi, Noboru;Saitou, Kazuhiro
    • International Journal of CAD/CAM
    • /
    • 제3권1_2호
    • /
    • pp.19-29
    • /
    • 2003
  • Disassembly is a fundamental process needed for component reuse and material recycling in all assembled products. Integral attachments, also known as 'snap' fits, are favored fastening means in design for assembly (DFA) methodologies, but not necessarily a favored choice for design for disassembly. In this paper, design methods of a new class of integral attachments are proposed, where the snapped joints can be disengaged by the application of localized heat sources. The design problem of reversible integral attachments is posed as the design of compliant mechanisms actuated with localized thermal expansion of materials. Topology optimization technique is utilized to obtain conceptual layout of snap-fit mechanisms that realizes a desired deformation of snapped features for joint release. Two design approaches are attempted and design results of each approach are presented, where the geometrical configuration extracted from optimal topologies are simplified to enhance the manufacturability for the conventional injection molding technologies. To maximize the magnitude of deformation, a design scheme has been proposed to include boundary conditions as design variables. Final designs are verified using commercial software for finite element analysis.

CIM을 이용한 PZT 프리폼의 제조공정에 대한 유한요소해석 (FEA for Fabrication Process of PZT Preform Using CIM)

  • 신호용;김종호;장종수;백승민;임종인
    • 한국세라믹학회지
    • /
    • 제46권6호
    • /
    • pp.700-707
    • /
    • 2009
  • This paper described finite element analysis (FEA) for fabrication processes of PZT perform using ceramic injection molding (CIM). The viscosity and the PVT characteristics of the manufactured PZT feedstock were measured. The filling patterns, pressure and temperature distributions of the preform were analyzed with TIMON 3D packages during CIM process. The geometrical variables such as gate type, location, and base thickness of the preform were considered. Also the fabrication conditions of the preform were optimized during the entire CIM process. Based on the simulated results, the various good perform was easily fabricated with the CIM process.

50 kVA 주상용 몰드변압기의 설계 및 특성평가 (The Design and Performance Test of Mold Transformer for Outdoor Pole)

  • 조한구;이운용;황보국
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF