• Title/Summary/Keyword: molding Analysis

Search Result 888, Processing Time 0.029 seconds

Development of Injection Mold for Subminiature Lenses Using Shell Runners Containing Multiple Holes (다공성 박판형 러너를 사용한 초소형 렌즈 사출금형 개발)

  • Yoon, Seung Tak;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.961-968
    • /
    • 2015
  • This study aims to develop an efficient mold structure for the injection molding of a subminiature lens, using shell-type runners instead of traditional cylindrical runners. While the shell runner has the advantage of shorter cooling time due to its thinner geometry, this smaller thickness causes an increase in injection pressure. In this study, the design of the shell runner was modified to contain multiple holes for the purpose of reducing injection pressure. Numerical analyses were performed for shell runners of various hole-shapes, and the resulting filling and cooling characteristics were discussed; the rhombic hole showed the best result for both filling and cooling characteristics. Subsequently, injection molding experiments were performed using an injection mold fabricated based on the rhombic design. The lens parts were successfully molded with highly-reduced cycle time and without degradation of part quality.

A study on the technology of in-mold punching process for integrated hole piercing of plastic hollow parts (플라스틱 중공부품의 일체화 성형을 위한 인몰드 펀칭 공정기술에 관한 연구)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • A study on in-mold punching technology for hole piercing during molding of hollow plastic parts was conducted. Considering the non-linearity of the HDPE plastic material, mechanical properties were obtained according to the change in temperature and load speed. A standard specimen for the in-mold punching test was designed to implement the in-mold punching process, and the specimen was obtained through injection molding. In order to analyze the influence of process variables during in-mold punching, an in-mold punching mold capable of controlling variables such as temperature and support pressure of the specimen was designed and manufactured. Mold heating characteristics were confirmed through finite element analysis, and punching simulations for changes in process conditions were performed to analyze punching characteristics and reflected in the experiment. Through simulations and experiments, it was found that the heating temperature, punch shape, punching speed, and pressure of the back side of the specimen were very important during in-mold punching of HDPE materials, and optimal conditions were acquired within a given range.

Quality Improvement of IML Film Injection Molding Method through Structural Analysis (IML 필름 성형공법 제품의 구조해석을 통한 품질개선)

  • Cha, Byung Su;Song, Chul Ki;Cho, Woo Hyun;Yang, Won Ock;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.67-76
    • /
    • 2022
  • The customer demand for diverse colors in home appliances has increased. However, this has led to issues for manufacturers, such as ensuring cost effectiveness and high-level quality control. To resolve these issues, production engineers utilize computer-aided engineering (CAE) tools for injection-molding processes and assess the suitability of process parameters for products manufactured using the in-mold labeling method. CAE can solve various problems in manufacturing processes, thereby increasing production efficiency and decreasing manufacturing cost. In addition, it can be used analyze customer complaints related to surface defects, such as part differences and irregular spacing between parts, and ultimately reduce product returns. In this study, CAE was used to solve quality problems and implement the most economical manufacturing process.

Optimization of Curing Pressure for Automatic Pressure Gelation Molding Process of Ultra High Voltage Insulating Spacers (초고압 절연 스페이서의 자동가압 겔화 성형 공정을 위한 경화 보압의 최적화 )

  • Chanyong Lee;Hangoo Cho;Jaehyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.56-62
    • /
    • 2024
  • By introducing curing kinetics and chemo-rheology for the epoxy resin formulation for ultra-high voltage gas insulated switchgear (GIS) Insulating Spacers, a study was conducted to simulate the curing behavior, flow and warpage analysis for optimization of the molding process in automatic pressure gelation. The curing rate equation and chemo-rheology equation were set as fixed values for various factors and other physical property values, and the APG molding process conditions were entered into the Moldflow software to perform optimization numerical simulations of the three-phase insulating spacer. Changes in curing shrinkage according to pack pressure were observed under the optimized process conditions. As a result, it was confirmed that the residence time in the solid state was shortened due to the lowest curing reaction when the curing holding pressure was 3 bar, and the occurrence of deformation due to internal residual stress was minimized.

Effect of Compressibility on Flow Field and Fiber Orientation in the Filling Stage of Injection Molding (사출성형의 충전시 고분자용융액의 압축성이 유동장과 단섬유 배향에 미치는 영향)

  • Lee, S.C.;Ko, J;Youn, J.R.
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.217-226
    • /
    • 1998
  • The anisotropy caused by the fiber orientation, which is inevitably generated by the flow during injection molding of short fiber reinforced polymers, greatly influences dimensional accuracy, mechanical properties, and other quality of the final product. Since the filling stage of the injection molding process plays a vital role in determining fiber orientation, an accurate analysis of flow field for the filling stage is needed. Unbalanced filling occurs when a complex or a multi-cavity mold is used leading to development of regions where the fiber suspension is under compression. It is impossible to make an accurate calculation of the flow field during filling with the analysis assuming incompressible fluid. A mold with four cavities with different filling times was produced to compare the numerical analysis results with the experimental data. There was a good agreement between the experimental and theoretical results when the compressibility of the polymer melt was considered for the numerical simulation. The fiber orientation states for compressible and incompressible fluids were also compared qualitatively as well as quantitatively in this study.

  • PDF

Effect of Fabricating Temperature on the Mechanical Properties of Spread Carbon Fiber Fabric Composites (스프레드 탄소섬유 직물 복합재료의 성형온도에 따른 기계적 특성에 관한 연구)

  • Eun, Jong Hyun;Gwak, Jae Won;Kim, Ki Jung;Kim, Min Seong;Sung, Sun Min;Choi, Bo Kyoung;Kim, Dong Hyun;Lee, Joon Seok
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.161-168
    • /
    • 2020
  • In this paper, we have studied the mechanical properties of thermoplastic carbon fiber fabric composites with spread technology and compression molding temperature were investigated. Carbon fiber reinforcement composites were fabricated using commercial carbon fiber fabrics and spread carbon fiber fabrics. Mechanical properties of the commercial carbon fiber composites (CCFC) and spread carbon fiber composites (SCFC) according to compression molding temperatures were investigated. Thermal properties of the polypropylene film were examined by rheometer, differential scanning calorimetry, thermal gravimetric analysis. Tensile, flexural and Inter-laminar shear test. Commercial carbon fiber reinforcement composites and spread carbon fiber composites were fabricated at 200~240℃ above the melting temperature of the polypropylene film. Impregnation properties according to compression molding temperature of the polypropylene film were investigated by scanning electron microscopy. As a result, as the compression molding temperature was increased, the viscosity of the polypropylene film was decreased. The mechanical properties of the compression molding temperature of 230℃ spread carbon fiber composite was superior.

Analysis and Design considerations of Energy Absorbing Steering System Using Orthogonal Arrays (직교배열표를 이용한 에너지흡수 조향계의 해석 및 설계)

  • 임재문;한선규;전원기;우덕현;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.144-155
    • /
    • 1999
  • An occupant analysis code SAFE (Safety Analysis For occupant crash Environment) is utilized to simulate and improve the crash performance of an energy absorbing steering system. The safety standard FMVSS 203 is simulated and used for design evaluations . Segments and contact elliposids are utilized to model the bod blocks and the components of the steering system with SAFE. Spring-damper elements and force-deflection characteristics are utilized to model the energy absorbing components such as the plate and the polyacetal molding. The plate absorbs the impact energy through tensile deformation . Whereas, the polyacetal molding absorbs the impact energy through compression. the body block test is carried out to validate tie simulation model, and real component tests are performed to extract the force-deflection curves . After the model is validated , the parameter study is carried out to evaluate the crash performance of the energy absorbing components. A performance measure is defined for the parameter study. Using the results of the parameter study and managing the orthogonal arrays, optimum design values of energy absorbing components are determined to minize the occupant injury.

  • PDF

Plan on the Analysis and Improvement of the Molding process of SCM435 bolt by use of the Finite Element Method (유한요소법을 이용한 SCM435 Bolt의 성형 공정에 관한 해석 및 공정 개선 방안)

  • Ahn, Kyo-Chul;Choi, Chui-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4950-4955
    • /
    • 2012
  • A bolt manufacturing process is completed with continuous forging. Technical and economical success of each process will depend on the appropriate process design and metal mold design for each procedure. This study aims to analyze the moldings of first and second steps among the multi-step molding processes of SCM435 bolt by use of the finite element method in order to achieve the reasonable process. Since the processes of first and second steps analyzed by use of the finite element method consist of axial symmetry, the transformed configuration of material satisfy the dimensions expected in process. In addition, the uniflow line formed in material becomes smooth and consistent over the entire process. Therefore neither molding of material nor inherent defect is expected.

Analysis of Mold Filling Associated with Unsteady Flow in Injection Molding Process (사출성형 공정에서 비정상 흐름에 의한 Mold Filling 현상)

  • 류민영;신희철;배유리
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.545-555
    • /
    • 2000
  • Surface defects in injection molded parts due to the unsteady flow are related to the dimension of gate, operational conditions and rheological properties of polymer. In this study we have examined surface defects in injection molding for PC, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes that are tensile, flexural and impact test specimens with various gate and cavity thicknesses. Through this study we have observed that the formation of surface defect associated with jetting during filling stage in injection molding is strongly related to not on]v die swell but retardation of die swell. Large die swell eliminates jetting however the large retardation of die swell stimulates jetting. Reducing the thickness ratio of cavity to gate can reduce or eliminate jetting and surface defects. It also enlarges process window that can produce steady flow of polymer melt in injection molding.

  • PDF

A Study on the Optimal Molding Conditions for Aspheric Glass Lenses in Progressive GMP (순차이송형 유리렌즈 성형공정에서 비구면 유리렌즈의 최적 성형조건 연구)

  • Jung, Tae-Sung;Park, Kyu-Sup;Yoon, Gil-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1051-1057
    • /
    • 2011
  • By the recently developed GMP(Glass Molding Press) process, aspheric glass lenses are widely used in many optical applications such as digital cameras, optical data storages and electrical devices etc. The GMP process can economically produce complex shaped glass lenses with high precision and good repeatability. This study deals the optimization of molding conditions for aspheric glass lenses in progressive GMP process through Design Of Experiment(Taguchi method). Tree main factors for molding conditions were selected based on pressure, temperature and cooling time at 1st cooling stage. From the analysis of experiments which were preformed with 3-cavity glass mold, it was revealed that the cooling time was the most sensitive parameter for form accuracy(PV) in progressive GMP process.