• Title/Summary/Keyword: molding Analysis

Search Result 886, Processing Time 0.028 seconds

Determined Car Door Latch Injection Molding Process Conditions through the Finite Elements Analysis (유한요소 해석을 통한 차량용 도어 래치 사출성형 공정조건 결정)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.499-508
    • /
    • 2016
  • Injection molding is a method for manufacturing many products, wherein a plasticized resin is injected into a mold at high pressure and hardened. According to the method, the product can be manufactured into various forms, and the mass production of up to tens of thousands of products is possible. The purpose of this study was to determine the process conditions for manufacturing a door latch for automobiles, through an analysis of the injection molding method. To calculate an appropriate injection flow for injection molding, a primary analysis for comparing the injection time, pressure, flow pattern, consolidation range, shear stress, shear rate, and weld line, as well as a secondary analysis for determining the conditions for stabilizing the molding temperature, holding pressure, and cooling process, were conducted. The characteristics of injection molding, and their influence on the product quality are discussed. No weld line and pores were observed on the products that had been manufactured based on the process conditions determined above. In addition, there were no flaws regarding the deformation compared to the prototype. Therefore, the manufacture of a product under the conditions determined in this study can reduce the defect rate compared to the existing production, and the process is also more competitive due to reduced production time.

Design and Analysis of Shell Runners to Improve Cooling Efficiency in Injection Molding of Subminiature Lens (초소형 렌즈 사출성형시 냉각효율 향상을 위한 박판형 러너의 설계 및 해석)

  • Yoon, Seung Tak;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1021-1028
    • /
    • 2015
  • Subminiature lenses are currently widely used in mobile phone cameras and are usually produced by injection molding. The lens molding process has the unique feature of a runner volume that is much larger than the part volume, and this feature should be considered when determining the mold design and molding conditions. In this study, a shell-type runner was proposed as an alternative to the conventional cylindrical runner used for lens molding. An injection molding simulation was performed by applying the proposed shell runner, and the simulation results were compared with those from the cylindrical runner case. It was found that the shell runner could considerably reduce the runner cooling time with only a slight increase in the injection pressure. The effect of the runner thickness was then investigated numerically in terms of the mold filling and cooling characteristics, from which an optimal runner thickness could be determined.

A study on CAE and injection molding of automotive thick-walled light guide with micro-optical patterns (마이크로 광학 패턴이 있는 차량용 후육 라이트 가이드의 CAE 및 사출성형에 관한 기초연구)

  • Dong-Won Lee;Jong-Su Kim;Hyeon-Hwa Lee;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2023
  • In this study, basic research was conducted on manufacturing technology of thick-walled light guide a component that controls the light source of automobile lamps. As a preliminary study for manufacturing the final injection molded parts, a model for analyzing the influence of micro patterns on light guides is presented. The optical characteristics of the light guide were analyzed according to the change of the curvature radius of the micro-optical pattern, and the injection molding characteristics of the light guide according to the change of injection molding conditions were analytically evaluated. It was confirmed that the luminance uniformity improves as the R value decreases for changes in the micro-pattern R value, but it was confirmed that there are technical limitations in actual injection mold core processing and high-replication injection molding. Injection molding analysis showed that cooling channel design is very important compared to general injection molding due to thick-wall characteristics and thickness variation. It was also confirmed that the cooling channel has a great influence on the cycle time and birefringence result due to residual stress. As a result of analyzing the influence of filling time, holding condition, and cooling on shrinkage, it was found that the cooling water temperature has a significant effect on the shrinkage of ultra-fine light guide parts, and the holding condition also has a significant effect.

Molding Quality Evaluation on Composite Laminate Panel for Railway Vehicle through Cure Monitoring using FBG Sensors (광섬유 FBG 센서기반 성형 모니터링을 통한 철도 차량용 복합재 내장재 패널의 성형 품질 평가)

  • Juyeop Park;Donghoon Kang
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.186-192
    • /
    • 2023
  • Recently, in the field of railway vehicles, interest in the use of composite materials for weight reduction and transportation efficiency is increasing. Accordingly, research and commercialization development to apply composite materials to various vehicle parts are being actively conducted, and evaluation is conducted centering on post-measurement such as mechanical performance evaluation of finished products to verify quality when composite materials are applied. However, the analysis of heat and stress generated during the molding process of composite materials, which are factors that greatly affect manufacturing quality, is insufficient. Therefore, in this study, in order to verify the molding quality of composite parts for railway vehicles, the molding quality analysis was conducted for the two types of composite interior panels (laminate panel and sandwich panel) that are most actively used. To this end, temperature and strain changes were monitored during the molding process by using an FBG fiber optic sensor, which is easy to apply to the inside of the composite, and the residual strain value generated after molding was completed was measured. As a result, it was confirmed that overheating and excessive residual stress did not occur, thereby verifying the excellent molding quality of the composite interior panel for railway vehicles.

The Difference of the Degree of Crystallinity of Foamed Plastics Depending on the Pressure Gradient in Mold Cavity (금형 cavity 내의 압력 차이에 의한 발포사출품의 결정화도 차이)

  • 이동욱;차성운;현창훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1354-1357
    • /
    • 2003
  • Mold Analysis is crucial factors in the design of injection molding process. Since the qualify of products depends on filing, shrinkage and etc, the procedure of prediction through analysis in the design of injection molding process is needed. In many cases, this kind of analysis makes it possible to predict pressure pattern which determines the condition of injection molding process. Crystallinity is the factor that determines the shrinkage of products. The studies showed the factors that had been related to the degree of crystallinity, which were mostly Weight Reduction, mold temperature and melt temperature. Therefore, the objective of this study is to see the differences of the degree of crystallinity depending on the positions of foamed plastics. The procedure of this study is as the following. First, Simulate the pressure gradient in mold cavity that can produces specimen by using Moldflow. Secondly, produce specimen and measure the degree or crystallinity of each part of specimen by using XRD. Lastly, identify the sensitivity of conventional plastic and foamed plastic on pressure gradient by comparing the simulation and the results of measurement.

  • PDF

Aspherical Lens Design and Injection Mold Analysis Using Extracted Shape Information (형상정보 추출을 통한 비구면 렌즈 설계 및 성형해석에 관한 연구)

  • Song, K. H.;Kim, B. C.;Yoon, H. S.;Yang, J. K.;Kim, K. B.;Xiao, H.;Cho, M. W.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.437-442
    • /
    • 2015
  • The development of polishing technology has enabled the production of injection molds with high quality surfaces and shapes. For products such as mobile phones which require high quality performance the use of plastic materials has many constraints such as shrinkage and deflection. The purpose of the current research is to use reverse engineering in order to find and analyze the data of a selected aspherical lens and then creating a process to design an improved lens. Additionally, the improved lenses are subject to molding analysis. In order to solve this problem, the lens construction program, Zemax, was used to analyze and optimize performance. In the case of optimization, the object was to eliminate spherical aberration and to find good MTF data. The result of the optimization data was similar to the MTF data found from a random lens. Specific resin and analysis conditions were selected and CAD modeling was done to enhance the injection molding analysis.

A study on the reduction method of sink marks for plastic products with T-shape (T자형 단면형상을 가진 성형품의 싱크마크 불량 감소 방안에 대한 연구)

  • Kim, Da-Eun;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.22-26
    • /
    • 2018
  • In the automotive industry these days, plastic parts have been developed and replaced with plastic parts by maintaining the same function of existing press parts for a variety of reasons. Injection molding plastic parts are subject to molding defects due to various factors, among which the sink marks usually occur in the areas where bosses and ribs are installed. In this study, we analyzed the influence of various factors on the occurrence of sink marks by using the flow analysis of the forming analysis program(Moldflow analysis) using the rib model with the T-shape. Tests have shown that the greatest influence on the sink mark of cosmetic products is the thickness and pressure of the ribs, and the thickness of the basic moulding thickness of the product increases. However, it was considered that the resin temperature and the mold temperature do not greatly affect the occurrence of the sink mark.

Investigation of the Molding Conditions to Minimize Residual Stress and Shrinkage in Injection Molded Preform of PET Bottle (PET 병용 프리폼 사출성형에서 잔류응력과 수축 최소화를 위한 성형조건의 연구)

  • Cho, Sung-Hwan;Hong, Jin-Su;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.467-471
    • /
    • 2011
  • PET bottle is manufactured by blow molding the preform, which is molded by injection molding. The neck part of the preform of PET bottle for juice or grain-based beverage is crystallized before blowing to improve heat resistance at the entrance of the bottle. However, residual stress, developed during injection molding of preform, prevents the crystallization. In order to release the residual stress in the preform, the preform is annealed after the injection molding. If the residual stress is reduced by optimizing the injection molding conditions of preform the annealing time would be shortened. In this study, the optimum conditions for minimizing the residual stress and increasing dimensional accuracy of the injection molded preform are suggested through CAE analysis. In order to optimize the molding conditions, minimizing residual stress and shrinkage, computer simulations have been carried out with help of design of experiment scheduling. Injection temperature, initial packing pressure and filling time were selected for control parameters. Residual stress was affected by injection temperature and filling time. Shrinkage was affected by injection temperature. It was found that maximum residual stress, distribution of residual stress and shrinkage were decreased by 22%, 40% and 25%, respectively at an optimum molding condition compared with the results of previous molding condition.

Effects of Extranasal Molding after Primary Cleft Lip Nasal Repair: Photogrammetric Analysis (구순열비교정술 후 외비주형술(Extranasal molding): 비주길이의 사진계측학적 분석)

  • Han, Ki Hwan;Paik, Dae Hyang;Son, Hyung Bin;Kim, Jun Hyung;Son, Dae Gu
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.563-569
    • /
    • 2006
  • Purpose: In the correction of cleft lip, there have been various methods to minimize recurrence of the nasal deformity after primary nasal surgery. After cheiloplasty and primary nasal surgery, we tried to elongate the columella of the cleft side, to stretch the vestibular lining of cleft side, and to elevate the alar cartilage of the cleft side with a molding prong. Methods: We had fifteen cleft lip patients; 12 unilateral cases(6.3-8.2 months), and 3 bilateral cases(3 - 7.5 months). Immediately after primary repair of the cleft lip, the toboggan shaped molding prong was located to deep inside of vestibular web of the cleft side. It was persistently suspended by a silicone tube which was connected to the prong and the frontal scalp. The results were analyzed with $Photoshop^{(R)}$ photogrammetrically for 6 - 48 months with on average of 20.6 months. We measured the proportion index of columellar length-interalar distance for three times(preoperation, immediate postoperation, and postoperation) on the nasal base views. Results: In unilateral, the index had a significant increase statistically between preoperation(10.73) and immediate postoperation(23.96). It is supposed that columellar length was reconstructed to 105.80% of normal side. But, it was decreased to maintain 87.7% of normal side in postoperation(20.54). The results were similar in bilateral. The linear scars by suture penetrating nose skin were not discernable. Conclusion: In summary, placement of the molding prong could elongate the reconstructed columella with some relapse postoperatively.

A study on the electrical and mechanical properties of PEMFC bipolar plate by thermoplastic composite injection molding process (열가소성 복합소재를 이용하여 사출성형 한 PEMFC용 bipolar plate의 전기전도도 및 기계적 특성 연구)

  • Yoon, Yong-Hun;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1999-2004
    • /
    • 2011
  • This research aims to develop polymer composites which can be used for PEMFC bipolar plate by injection molding process. Considering the moldability and stiffness, we used LCP(Liquid crystal polymer) as base resin. In order to improve electrical conductivity and mechanical properties, we chose carbon black, and both synthetic graphite and expanded graphite. The composites with different recipe are prepared for injection molding of PEMFC bipolar plate and CAE(Computer Aided Engineering) analysis was performed to predict melt flow and fiber orientation We did successfully fabricate the ASTM specimens by injection molding, and measure the electrical conductivity of the samples by using four point probe device. We measured mechanical properties such as flexural strength, flexural modulus and Izod impact strength. Conclusively, the electrical conductivity increased with increasing additive concentration, but both flexural strength and Izod impact strength decreased due to the brittle nature of carbon-based additives.